
,rC FILE CM

00~

1J IMPLEMENTATION OF A VISUAL SERVOING

SYSTEM FOR EVALUATION OF ROBOTIC

REFUELING APPLICATIONS

THESIS

Mikel M. Miller
Captain, USAF

AVT;

AFIT/GE/ENG/87D-45 171 DTIC "

MAR 0 71988

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

D-bTRIutON STATEMENT A

Appovod orpublic Mean;

Distribution Unlimlt~d

AFIT/GE/ENG/87D-45

IMPLEMENTATION OF A VISUAL SERVOING

SYSTEM FOR EVALUATION OF ROBOTIC

REFUELING APPLICATIONS

THESIS

Mikel M. Miller
Captain, USAF RTBT

AFIT/GE/ENG/87D-45
AproeMAR 0 p r a d i o u m

Approved for public release; distribution unlimited

AFIT/GE/ENG/87D-45

IMPLEMENTATION OF A VISUAL SERVOING SYSTEM

FOR EVALUATION OF ROBOTIC REFUELING APPLICATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements of the Degree of

Master of Science

Mikel M. Miller, B.S.

Captain, USAF

December 1987

Approved for public release; distribution unlimited

Preface

The purpose of this research was to design and integrate

a visual servo control scheme for a PUMA 560 robot arm that

derives its position feedback information from a Machine

Intelligence Corporation (MIC) vision system. The vision

system's television camera was mounted to the PUMA's third

joint. The integrated vision-robot system (VRS) successfully

employed closed loop, static and dynamic, visual servo

control techniques for demonstrating the feasibility of using

a VRS to ground refuel an aircraft.

I wish to express my deepest gratitude to a number of

people who helped me complete this exciting research project.

In particular Dr. Matthew Kabrisky, my advisor, and Dr.

Michael Leahy both of whom provided valuable suggestions and

recommendations. Dr. Leahy's expertise in robot control and

the PUMA 560 was invaluable. This research effort would not

have been a "success" without his help and assistance. I am

forever grateful to Dr. Kabrisky who was always excited to

come "underground" to view my progress ("YOU HAVE 20 SECONDS

TO DROP YOUR WEAPON", to quote the well-renowned movie

production "RoboCop"). Dr. "K" provided unmeasurable

guidance and direction, especially in my write-up. I would

also like to express by deepest thanks to Mr. Bob Ewing

(THANKS BOB) for his encouragement and excitement, especially

at the start of this project. Thanks also go out to Lt Col

Zdzislaw H. Lewantowicz for his efforts in reviewing my work.

ii

Thanks also go out to Capt Dewayne Davis from the Flight

Dynamics Laboratory and Mr. Ed Horan from Unimation. Capt

Davis provided good information on current robotic issues

facing the Air Force. A special thanks go to Mr. Horan, for

without Ed Horan and "Ma Bell", I'd still have two pieces of

equipment that "didn't want to talk to each other".

I also owe my most sincere appreciation to two fellow

students and friends, Captains Peter Van Wirt and Robert

Lashlee. These individuals helped make the AFIT experience a

highlight in my life - THANKS GUYS.

Finally, last - but by far not least, I thank my

blessed, loving wife, Colleen; my wonderful children, Casey

and Krista; and God. Colleen's enthusiasm and encouragement

are inspirational and they make our relationship a special

gift. Her ability to make me work and have fun are uncanny

(Thanks for all the fun on the golf course).

Acceesson For

-NTIS

Dl:it .,

~~i

Table of Contents

Page

Preface ... ii

List of Figures ... vi

Abstract .. viii

I. Introduction 1

General Issue 1

Background 4
Statement of Problem 5
Scope 6
Assumptions 6
General Approach 8
Presentation 9

II. Review of the Literature 10

Sensors .. 11
Control 12
Visual Servo Control 13
Research 15
Summary 18

III. System Setup and Methodology 20

Introduction 20
Static Look-And-Move 20

Subtask 1: Camera Mounted Above the
Work Space 21

Subtask 2: Camera Mounted on Arm: Tracking 27
Subtask 3: Camera on Arm: Tracking

and Acquiring33
Subtask 4: Camera on Arm: Search 36

Dynamic Look-And-Move 38

iv

IV. Results and Discussion 41

Introduction 41
Static Look-And-Move 41

Subtask 1: Camera Mounted Above the
Work Space 42

Subtask 2: Camera Mounted on Arm: Tracking 49
Subtask 3: Camera on Arm: Tracking

and Acquiring 54
Subtask 4: Camera on Arm: Search 59

Dynamic Look-And-Move .o........................ 63

V. Conclusions and Recommendations 67

Conclusions 67
Recommendations 69

Appendix A: Equipment and Interface Descriptions 71

Appendix B: VRS Software Program Listings 124

Appendix C: User's Manual 157

Bibliography .. 163

Vita .. 165

v

List of Figures

Figure Page

1. Robotic Refueler 3

2. Block Diagram of an Intelligent Robot System 11

3. Camera Mounted Above the Work Space 22

4. Functional Block Diagram of the MIC/PUMA
Control System 23

5. Vision Menu .. 24

6. Software Structure Chart 25

7. Vision Demo Menu 26

8. Software Structure Chart 27

9. Block Diagram of Visual Servo Control Scheme 29

10. Camera Mount and Starting Position 30

11. Software Flow Diagram of track.targ 32

12. Software Flow Diagram of track.targ.scat 35

13. Software Flow Diagram of search 37

14. Square Conical Search 38

15. Software Flow Diagram of track.targ.dcat 40

16. Targets Used in Subtask 1 42

17. Rectangular Target Placed in Work Frame 44

18. Highlighted Digitized Image on Video Monitor 44

19. User Terminal Output 45

20. Circular Target Placed in Work Frame 46

21. Highlighted Digitized Image on Video Monitor 46

22. Final Position of Robot End-Effector 47

23. User Terminal Output 47

vi

24. Digitized Image of Target Towards

Edge of Work Frame 48

25. Sequential Motion During Visual Servoing 51

26. Starting Position of VRS 56

27. Intermediate Position of VRS 56

28. Final Position of VRS 57

29. Robotic Refueler 58

30. Starting Position of VRS 60

31. Intermediate Position of VRS 61

32. Final Position of VRS 61

33. Starting Position of VRS 64

34. Intermediate Position of VRS 65

35. Final Position of VRS 65

vii

AFIT/GE/ENG/87D-45

Abstract

The threats of dangerous environments and projected cuts

in military personnel, combined with advances in robotics and

sensors, have caught the attention of the United States Air

Force. The Flight Dynamics Laboratory at Wright-Patterson

Air Force Base has been conducting research into concepts for

performing aircraft ground refueling using robotic systems.

The main sensor for a robotic refueler application is

vision. Visual information received from a TV camera mounted

to the refueling boom, provides the feedback data necessary

for employing visual servo control techniques. This feedback

data, the refueling port's centroid and depth, is used to

visually guide the robot refueler to the refueling port.

This research effort designs and integrates a visual

servo control scheme for a PUMA 560 robot arm that derives

its control information from a Machine Intelligence

Corporation vision system. The vision system's TV camera is

mounted to the PUMA's third *oint. The integrated vision-

robot system (VRS) uses closed oop, static and dynamic,

visual servo control techniques t demonstrate the

feasibility of ground refueling.

The results successfully demonstrate the VRS's ability

to search for the receptacle, and use visual servo control

techniques to guide the VRS to it.

viii

IMPLEMENTATION OF A VISUAL SERVOING SYSTEM

FOR EVALUATION OF ROBOTIC REFUELING APPLICATIONS

I. Introduction

General Issue

Advances in robotic technology have helped to

revolutionize industry worldwide. The major reason for this

revolution lies in a robot's ability to repeat a

preprogrammed sequence of tasks. Robots have freed human

beings from boring, repetitive tasks. Their strength and

endurance allows safe, accurate operations, especially in

hazardous conditions which exist in various industrial and

military situations. A robot required to operate effectively

in changing, hazardous environments must be equipped with

sensors (vision, acoustic, etc.) and artificial intelligence

(AT). Al algorithms process data received from the sensors

enabling real-time decisions to be made affecting the

preprogrammed operation of the robot. A robot equipped with

sensors and AI is considered an intelligent

robot (8:229-230).

One potentially dangerous environment for personnel

exists in a chemical/biological (CB) contaminated area. A CB

contaminated environment on the runway of a military

installation is possible during a hostile situation.

Exposure to this environment can result in serious injury or

death (3).

One solution to the problem of exposing personnel to a

CB environment is to have an intelligent robotic refueler

accomplish the task of aircraft ground refueling. A brief,

simplified scenario of a possible refueling operation

follows:

1) The aircraft parks.

2) The robotic refueler pulls up to the
aircraft. This could be accomplished
autonomously or by using a human driver.

3) A refueling boom swings up and over the
aircraft near the air refueling port.

4) A vision system finds the refueling port and
vision servo control techniques guide the
robot boom into the port.

5) Once the aircraft has been refueled, the boom
is removed from the port and stowed.

6) The robotic refueler pulls away from the

aircraft.

7) The aircraft departs.

An artist's conception of a robotic refueler with a human

driver refueling an aircraft through the air refueling port

is shown in Figure 1.

2

L

L
U)
'-4
U)

SI.-
a)

0
/ ".4

0n
0

/
-4'K L

".4
U-

3

Background

The threats of dangerous environments and projected cuts

in military personnel have raised concern in several

operational aspects of the United States Air Force (USAF).

The Flight Dynamics Laboratory at Wright Patterson Air Force

Base has been conducting research into concepts for

performing aircraft ground refueling using robotic systems.

To enable a robotic refueler to operate autonomously,

intelligence must be integrated into the system. The main

sensor for the application of a robot refueler is vision.

Visual information received from a television camera provides

the data necessary for vision servo control. Vision servo

control provides feedback information on the relative

position of the robot to a target. This feedback data is

used to guide the robot to the desired target (12:107-116).

Safety requirements in current ground refueling

procedures require a minimum of three military members to

refuel an aircraft. With predicted cuts in military

manpower, any safe refueling method which could reduce

personnel helps solve the manning problem. It is also

desirable to have a minimum number of human beings exposed in

a hostile environment during the refueling.

4

The Flight Dynamics Laboratory's initial research

determined the air refueling port to be the best place to

refuel an aircraft using a robotic refueler. The air

refueling port has many advantages:

1) It is standard on all Air Force fighter
aircraft.

2) It is compliant within a 30 degree cone of
insertion.

3) It is a slipway for teleoperated insertion of
a boom nozzle.

4) It has connections for audio or other data

transfer information.

Using the air refueling port eliminates the need for robot

end-effectors to simulate complicated human dexterous

manipulations required by current ground refueling

procedures, such as opening and closing an access panel,

removing and replacing the fuel cap, and twisting on and off

the fuel nozzle (3).

Statement of Problem

The purpose of this research is to design and integrate

a visual servo control scheme for a PUMA 560 robot arm that

derives its control information from a Machine Intelligence

Corporation (MIC) vision system. The aim of this vision-

robot system (VRS) is to demonstrate the ability of a ground

refueling robot to acquire the refueling port of an aircraft

in real-time. Guidance of the refueling boom into the port

is based on visual feedback received from a television camera

rigidly attached to the robot arm.

5

Scope

This research concentrates on visual servoing. The MIC

vision system takes a picture of a well defined scene and

forms a video grey-scale binary image which is then processed

to determine the position and orientation of a target in the

scene. Binary images are needed for the fast computer

computations required during efficient, real-time visual

servo control.

This investigation focuses on three separate areas to

solve the problem of ground refueling an aircraft with a

visually equipped robot:

1) Teach the vision system to recognize the
refueling port from any viewing angle.

2) Design a visual servo controller for the
real-time guidance of the robot refueler to
the air refueling port.

3) Develop a scanning algorithm that moves the
robot arm in a pre-programmed pattern so
its vision system can acquire the refueling
port.

Assumptions

Since the cost of developing a full-scale robot refueler

is not practical for this project, a simple simulation of the

robot refueler will demonstrate the theory developed during

this research. To simulate video acquisition of the

refueling port, an artificial, well-defined, high contrast

target-background scene was constructed; the target, a white

ball, represents the refueling port and a black background

represents the surrounding area. The vision-robot system

6

(VRS) will scan an area until the vision system acquires the

target. Once located, the visual servo controller will guide

the VRS to the target.

Computer processing time is of the utmost importance for

effective, real-time visual servo control. Determining the

location and orientation of a ball requires the least amount

of computer processing in the MIC image processor, because

the two dimensional image of a ball is a circle from any

viewing angle. The high scene contrast assists in providing

the fast processing time required during real-time control

operation. White against black also eliminates the chance of

shadows distorting the shape of the ball. A lack of shadows

removes the requirement for any special lighting normally

found in a grey-scale image system.

Another reason for using a ball as the target is the

camera's fixed focus lens. Even though the ball becomes

blurry as the camera approaches the target, the ball's

digital image will remain circular, thus allowing simple

target identification.

Additionally, it is assumed that the path between the

ball and the VRS has no obstacles. Therefore, obstacle

avoidance techniques will not be researched or employed.

Finally, it is noted that an added capability of the MIC

vision system enables it to determine the centroid and

-
_ A.7

orientation of any target placed in its camera's field-of-

view (FOV). This enables the vision system to provide some

information about a target even though it may not be able to

identify the target. The vision system's television camera

will be mounted rigidly on the third joint of the PUMA 560

robot arm. Specifications concerning the PUMA 560 and the

MIC vision system are in Appendix A.

General Approach

This research effort will be separated into two tasks

based on two different types of visual servo control schemes.

The first task implements closed-loop, static look-and-move

visual servo control techniques to simulate the acquisition

and guidance of the robot refueler boom into the refueling

port. This task verifies the interface and correct operation

of the PUMA 560 and the MIC vision system. It also develops

a system that searches for a target, and once acquired,

implements static visual servo control techniques to guide

the VRS towards the target. The second task implements

closed-loop, dynamic look-and-move visual servo control

techniques to simulate the guidance of the robot refueler

boom into the refueling port.

8

Presentation

This thesis is composed of five chapters. Chapter II

summarizes current research in the field of visual servo

control. Chapter III presents the system setup and research

methodology used in completing this research effort. Chapter

IV discusses the results. Finally, Chapter V presents the

conclusions and recommendations for further work.

9

II. Review of the Literature

Introduction

The use of robots, especially in industrial assembly,

has grown at a remarkable rate during the last two decades.

The term "robot" was coined by the Czech writer Karel Capek

and means forced labor. Robots do the work of humans

although they do not look or act like humans (8:2-3). The

major advantage of robots lies in their ability to repeat a

preprogrammed sequence of tasks in a constant environment

with great accuracy. The major disadvantage of robots lies

in their inability to sense and respond to a changing

environment (8:229).

The integration of intelligence into a robot is needed

for it to effectively operate in a changing environment.

Intelligence can be installed in a robot by equipping it with

appropriate sensors and artificial intelligence (AI). Figure

2 shows a block diagram of a possible intelligent robot. Data

from the sensors provide the necessary information required

by AI algorithms to enable real-time decisions that may

affect the preprogrammed operation of the robot (8:229-230).

This chapter briefly introduces the various robotic

sensors and control schemes currently in use or in

development. A summary of the various applications of robot

manipulator systems integrated with visual sensors and visual

servo control schemes will also be presented.

10

I I Task , Interpolator i---•(Control .1 Robot I 'I
I::: .Program II I I Loops I4-4Manipulatorb:r f

, Environment

Robot
Computer . . ' . .

AI I i Sensor kH Sensor H -i
I Algorithm I nterface i:::: I

i , , , . : - -~!:•ii...!••~ i:•• i!~ i:i:: i .:

Figure 2. Block Diagram of an Intelligent Robot System
(8:230)

Sensors

Sensor development and integration has been an area of

active research. "The interaction of robots with sensors has

always been an important goal in the development of robotic

systems. Such sensor-based systems would have increased

functional capabilities as well as flexibility in the

execution of tasks" (12:107). Robotic sensors are classified

as either contact or noncontact. Contact sensors include

tactile and force-torque sensors. Noncontact sensors

include proximity, acoustic, range, and visual sensors (8:230).

11

The visual sensor of interest to this research uses an

image processor to digitize a scene viewed through a

television (TV) camera. The vision system provides the

position and orientation of a target. This information is

fed back to the robot controller. The controller directs the

robot to the target, enabling the robot to complete its

programmed tasks.

Control

The two basic types of control schemes employed, when

using sensor data for robot control, are static sensing and

dynamic sensing. The static sensing method maintains the

robot in a Rtationary position while sensing takes place.

Most control systems which implement this method use open

loop control. Once all processing of sensor data has been

completed, the robot accomplishes its required tasks without

any further information received from the sensing device. By

contrast, the dynamic method controls real-time robot motion

based on informational updates acquired from the sensor in a

closed loop configuration (8:231).

Most modern vision systems employ a static closed-loop

mode of operation. The vision system takes a target's

picture and feedbacks its position with respect to the

robot's position. The difference between'the two positions

is considered a sensed error. The sensed error actuates the

necessary robot movements required to eliminate the error.

The vision system continually monitors the error between the

12

robot's position relative to the target's after each robot

motion until the error no longer exists (8:231).

Visual Servo Control

A limited amount of research has been done in the

development of control structures for visual servoing. This

section discusses current techniques and approaches used in

visual servo control.

"The function of machine vision in servoing is to

determine the spatial relationship that exists between the

camera, tool, and the workpiece" (1:943).

Visual servo robot control systems provide feedback
on the relative end-effector position of a robot.
They offer an interactive positioning mechanism
which depends upon extraction and interpretation of
visual information from the environment (12:107).

The accuracy of visual feedback depends on the distance from

the camera to the end-effector and the distortion of the

image plane due to the camera lens (1:944-945).

Visual servo control systems are characterized by either

a feedback representation or a joint control mode. Image-

based and position-based visual feedback systems comprise the

feedback representation. Image-based visual feedback control

parameters are based on an image's features, where as

position-based visual feedback control parameters are based

on an object's geometry, position and orientation (12:108).

The two basic joint control modes are closed-loop and

open-loop. "The 'look-and-move' structures utilize inner

closed-loop joint. control. The 'visual-tracking' structures

13

have no closed-loop joint control and rely only on sensory

feedback to drive the manipulator" (12:108).

Practical, real-time operation of sensor servo systems

has yet to be achieved. Sanderson and Weiss believe:

A number of factors have delayed the practical
development of sensor-based servo systems. Robot
positioning systems and robot control systems are
difficult to analyze and design in themselves, and
there are a large number of practical applications
of non-sensing robots in highly structured
industrial and other environments. Sensing
systems, particularly vision, are often slow
relative to manipulator dynamics, and practical
applications or machine vision are currently also
limited to highly constrained situations. The
analytical complexity of both manipulator control
and sensory data interpretation make general
formulation of the sensor-based control problem
challenging (12:107).

In visual control systems, the video camera provides the

required image information for determining camera position

relative to object position. Computer processing times

(including interprocessor communications) under 1/10 of a

second (14:214) are required during scene analysis to achieve

real-time visual servoing for some typical engineering

applications. The computer processing includes image

preprocessing, feature extraction, and interpretation. The

computer processing adds unwanted noise and time delays to

the system which, when taken into account, adds complexity to

the system's operation.

A majority of the control work using vision systems has

been with the open loop, static look-and-move type discussed

earlier. In these applications the camera is mounted

14

separately from the robot. The vision system takes a

picture, processes the scene information, and outputs the

object's position and orientation to the robot control system

so the robot manipulator can accomplish its predetermined

task. This technique suffers since the above operations do

not occur in the real-time requirement for visual servo

control.

Research

Numerous authors have researched and/or developed a

variety of vision-robot systems using some form of visual

servoing. There are two basic methods used in vision

servoing. One involved the camera mounted over the workspace

while the other has the camera mounted directly on the robot

manipulator. The first method usually works on systems

concerned with the servoing of a robot to grasp an

unorientated object. Ward et al., developed CONSIGHT: an

industrial vision-based robot system which uses a linear

array camera (mounted overhead) and structured light. As an

object passes below the camera on a moving belt, CONSIGHT

produces a two-dimensional (2-D) image of the object in order

to determine its position and orientation with respect to the

robot (15:195-211). This system, as well as others using

structured light, only work effectively in controlled,

relatively stable environments like those found in many

industrial applications.

15

Another example using a camera mounted separately from

the robot arm was done by Palm et al. They have demonstrated

how a visual system comprised of a -;ngle camera and two

light sources used visual servoing techniques to enable the

accurate robotic assembly of pins into an electrical

connector. The vision algorithm relied upon the relative

distance between the pin's actual position and its desired

position (10:221-236).

The second method used in visual servoing has the camera

mounted on the robot manipulator. "This technique is

desirable for accuracy due to the close proximity of the

camera to the end-effector and the workpiece" (1:943).

Research in this area involves the extraction of 3-D

information from a 2-D image using triangulation, structured

lighting , and perspective cue depth measurement (1:943).

This method has been proven successful by Hill and Park, and

VanderBrug (6;14). VanderBrug et al. developed a system

utilizing a miniature solid state camera and a strobographic

light source mounted directly onto the robot manipulator.

The light source flashes a plane of light onto an object in

the camera's field of view. When the plane of light strikes

the object, line segment images are viewed by the camera.

Computer algorithms utilizing triangulation principles

interpret the image segments to provide the range and

orientation of the object (14:213-231).

16

Bamba et al. incorporated a system based on the optical

pattern projection method used for recognition of 3-D

objects. Their system uses a small visual sensor which has a

photo sensitive position detector and a light emitting diode

(LED) for its main components. This system can be used for

path correction during arc-welding. Light emitted from the

LED is projected onto the surface of the object to be welded

and deflected back to the position detector, providing 3-D

information about the object (2:169-177).

The systems mentioned above all suffer from the same

problem; the requirement for some form of structured light

and controlled environments. These systems would not be

practical for a robotic ground refueler which would have to

operate in a changing environment. The next three

developments more closing relate to the scope of this

research effort.

An example using a small, solid state camera attached to

a robot end-effector was demonstrated by Hill and Park. This

system can operate by either conventional lighting or

structured lighting, therefore, making it more versatile.

The image processor converts a scene into binary images to

achieve fast and reliable processing. Visual feedback

enables the robot to guide the manipulator to a desired

target (6:233-246).

Harrell et al., developed a visual servo system for a

three degree-of-freedom harvest robot to pick fruit from a

17

tree. The system received its visual feedback information

from a CCD camera mounted in the robot's third prismatic

joint. "Simple proportional gain control laws utilized this

vision feedback to independently servo the two revolute

joints" (5:537) to the desired piece of fruit. The system

used a strobe light to determine the distance to the fruit.

The system successfully tracked fruit motions during a

harvest cycle (5:537-545).

A system that did not need to compute the coordinate

relationship between the robot end-effector and the camera

was developed by Kim et al. The system used a miniature

camera mounted to the sixth joint of the PUMA 560 robot arm.

The system visually servoed itself to the correct orientation

and position to grasp a target. The system obtained 3-D

information about the target from a single camera which used

an iterative focusing method and a distance formula which

derived distance from two different images along the same

line of sight of the camera (7:417-422).

Summary

"Visual servo robot control systems provide feedback on

the relative end-effector position of a robot. They offer an

interactive positioning mechanism which depends upon

extraction and interpretation of visual information from the

environment" (12:115). Most current systems operate using

the basic static look-and-move sequence of operations. These

systems usually incorporate a camera mounted over the

18

workspace. However, there is increasing development in the

areas of integrated vision-robot systems using dynamic look-

and-move and visual-tracking techniques. These new

developments usually have the camera mounted directly on the

robot manipulator. An intelligent robot is "visionable" by

equipping it with the ability to sense and respond to a

changing environment.

This completes the Review of the Literature; the system

setup and methodology can now be presented.

19

III. System Setup and Methodology

Introduction

The goal of this research is to design and implement a

visual servo control scheme to simulate the ground refueling

of an aircraft using a visually guided robot. An integrated

vision-robot system (VRS) composed of a PUMA 560 robot arm

and MIC vision system are used to accomplish the research.

This chapter describes the system setup and methodology

involved in applying static and dynamic, look-and-move visual

servo control schemes to an integrated robot-vision system.

Static Look-And-Move

To accomplish the task of developing a system that

searches for and acquires a target using static look-and-move

visual servo control, the task was separated into the

following four subtasks:

1. Develop an open loop, static look-and-
move system with the camera mounted
above the robot work space.

2. Develop a closed loop, static look-and-move visual
servo control system with the camera mounted to the
third joint of the PUMA 560 that tracks a target
(white ball) against a black background.

3. Using the results from Subtask 2, develop a visual
servo control system that tracks and moves towards
the target.

4. Add to Subtask 3 by developing a scanning algorithm
to search for and acquire the target.

The accomplishment of each subtask serves as a building block

20

in achieving the overall task. The following subsections

describe each subtask's system setup and methodology.

Subtask 1: Camera Mounted Above the Work Space.

This subtask verifies the interface between the MIC

system and the PUMA 560 robot arm, It introduces the

following: the PUMA 560 robot arm and its associated

peripherals; the VAL II programming language; the MIC vision

system; the interface between the vision system and the PUMA

560; and the relationship between locations in the camera's

frame and the robot's frame. A description of the PUMA 560,

the MIC vision system, and the interface between the two

systems is in Appendix A.

The camera is mounted to a camera stand and positioned

above a table in the robot's work space as shown in Figure 3.

The vision system's effective work area is established by the

camera's field-of-view (FOV). The camera's FOV is determined

by the type of lens used and its focal length, and is

described by the height and width of the visual field. The

lens used in this research is a Fujinon TV 1:1.4/25 and has a

FOV with a height of 300 mm and width of 365 mm.

The image processor in the vision system transforms the

grey-scale camera image into a binary image by means of a

programmable threshold in order to generate its silhouette.

To simplify the threshold operation, images should be

selected with maximum contrast between the target and its

background. White targets against a black background are

21

used in this subtask. A white target against a black

background also eliminates shadows, thereby abolishing any

requirement for special lighting.

Figure 3. Camera Mounted Above the Work Space

An open loop, static look-and-move system is implemented

to verify the interface between the vision system and the

robot. The vision system identifies a target and provides

the two-dimensional location of its centroid. This

information is transmitted, open loop, to the robot

22

•. I -- -.... --- • -

controller enabling the robot to move to the desired

location. A functional block diagram of the open loop

vision-robot control system is shown in Figure 4.

! Define Objectsý lCompute a Set JCompare
& Compute i lof Orientation-I IFeatures withl 1

iLocation & I� --opi Independent -NoPrototype use!
1Orientation Features that I lNearest i

IDescribe Object! |Neighbor
-~ -- "---~'--"~4Algorithm

Threshold to t...... r.. i
iFind Object I
!Boundaries 4

-• •" Edge Iinter-
Detection 'Processor

'Message
4Grey-scale)Handling i

"image formation
S! Solid-state
;, /camera

Control

S• I VAL/PUMA ••.... ... _... i
1. • Target at (x,y,z,G)

Figure 4. Functional Block Diagram of The MIC/PUMA
Control System (18:3)

23

A menu driven software package accomplishes the tasks
L

shown in Figure 5. Appendix B lists the various programs

used by this package (NOTE: listings of the system programs

are proprietary information and not provided. However,

brief descriptions of the software are in Appendix A).

Appendix C contains a user's manual. The 'WARNING' is

required to prevent unpredicted movements of the arm due to

inaccurate calibration. Figure 6 shows the software

structure of the various user selectable options. Option 1

initializes communication between the vision system and the

robot.

THE FOLLOWING OPTIONS ARE AVAILABLE I

1. INITIALIZE VISION/ROBOT COMMUNICATION

2. VISION-TO-ROBOT CALIBRATION

3. PROTOTYPE TRAINING

I 4. PROTOTYPE STORAGE AND DELETION I

5. VISION DEMO

I I
I $ ********************** I

I * --------------- > WARNING < -------------------
I * $ I

I * BEFORE EXECUTING OPTIONS 3,4, OR 5, I
I 2 OPTIONS 1 AND 2 MUST BE ACCOMPLISHED *

I* 2
I *** I
I I

PLEASE ENTER THE NUMBER OF THE OPTION I
[YOU DESIRE --- > I

Figure 5. Vision Menu

24

VISION.MENU I

IIU.INITVISIONr I I PROTOTYPE.TRAIN I 1 I VISION.DEMO I

I I I

I I VISION.ROBOT.CAL I I BLOB.STORE.OR.DELETE I

I r--: -i •i. .. I''-l i''- '=L' I
U.BOOT i U.SAVE I I I U.BOOT I

' II - -- - II

I U.K.TEACH I U.DELETE.BLOB I IVISION.MENUII

I I

U. FRAME.TEACH

Figure 6. Software Structure Chart

Option 2 calibrates the vision-robot system. This

option determines the scale factor defining the ratio of the

distance between two locations in the robot's frame to the

distance in the camera's frame. Finally, the vision-robot

work frame is established to determine the relative

transformation between the camera and the robot.

Options 3 and 4 deal with prototyp.ng. Option 3 allows

the user to teach the vision system various targets, such as

a circle or rectangle. Option 4 enables the user to store,

recall, or delete the various targets trained.

25

Option 5 calls another menu which runs a demo permitting

the user to run various programs which identify trained

targets and/or directs the robot to point to the centroid of

a target in the camera's FOV. Figure 7 displays the various

user selectable options in the demo. Appendix B lists the

programs used in the demo options. Figures 8 displays the

software structure chart. Demo 1 instructs the vision system

to take a picture to determine the number of targets, and the

identification and centroid position of the largest target in

the camera's FOV. Demos 2 and 3 accomplish the same tasks as

Demo 1 with the addition of instructing the robot to point to

the desired target's centroid.

A I

I S * I
$ * WELCOME TO AFIT'S VISION DEMO $

I S *********************** I

I THE FOLLOWING DEMOS ARE AVAILABLEI I
I 1. TARGET IDENTIFICATION
I I

2. TARGET IDENTIFICATION AND ROBOT POSITIONING I

3. DIRECT ROBOT POSITIONING

4. GO BACK TO THE VISION LAB MAIN MENU

PLEASE ENTER THE NUMBER OF THE DEMO
I YOU WISH TO VIEW --- >I I

Figure 7. Vision Demo Menu

26

I iI VISION.DEMO.MENU
I r . . --- T

LIDENT.BLOBS IDENT.BLOB.POINT.CENTER I I VISION.MENU H

POINT.CENTER

Figure 8. Software Structure Chart

With the robot and vision systems introduced and the

interface verified, the remaining three subtasks will

describe the setup and methodology for developing a visually

guided robot refueler.

Subtask 2: Camera Mounted on Arm: Tracking

This subtask mounts the camera onto the third joint of

the PUMA 560 and implements a closed loop, static look-and-

move visual servo control scheme. The control scheme

utilizes information from the vision system to provide the

location of a target's centroid to the robot controller. The

controller uses the location information to control the

motion of the robot in the PUMA's world coordinate frame.

The PUMA 560 manipulator is controlled point-to-point.

Motion between points can be controlled by a proportional (P)

or proportional and derivative (PD) feedback loop. The P

27

feedback loop uses high gain position feedback to bring the

difference between the robot's desired position and the

actual position to zero. However, a P feedback loop

controller cannot guarantee an overdamped response, i.e. no

overshoot (4:89-92). This visual servo control scheme cannot

afford a problem with overshoot, because the VRS may strike

the target or oscillate around it endlessly. To overcome

this problem, the PD feedback loop controller, which feeds

back velocity as well as position is used. This system is

tuned by the manufacturer to provide an overdamped response;

guaranteeing no overshoot. PD loop control is desired for

this research effort, however, the PD loop is only active for

28 millisecond increments. Therefore, robot movement

commands must be divided into motions that can be completed

during each time increment, otherwise P loop control takes

over and an overdamped response is not guaranteed.

It is desired to have the camera centered on the target

at all times. Therefore, as the target moves, the robot will

track it, attempting to keep the target centered in the

camera's FOV. The vision system takes a picture and

estimates the error between the target's position and the

center of the camera's FOV. The block diagram of the visual

servo control scheme is shown in Figure 9,. This subtask

simulates the visually guided robot refueler's responsibility

to maintain camera view on the aircraft refueling port.

28

I I
I I
I I
I PUMA's I

Current I
Offset PD

I +U Controller
I w.r.t. -

Target's i I
* Centroid I

Center a MIC I I
I r | Vision . .

I of Target D System 11

I -tt -

Figure 9. Block Diagram of Visual Servo Control Scheme

The camera is mounted to the robot's third joint using

Velcro strips. The camera lens is pointed perpendicularly to

the robot's World Coordinate System (WCS) x-y plane, see

Figure 10. In this configuration, an offset exists between

the location of the camera and the robot's end-effector. To

account for the offset, the center of the camera's FOV is

considered to be the robot end-effector's current location.

This is a translation along the camera's viewing axis. An x

and y correction is not necessary since it is desired to keep

the target centered in the camera's FOV, not centered below

the robot end-effector. Therefore, if the target is not

centered in the camera's FOV i•hen a picture is taken, the

29

target's x and y centroid position is considered an offset to

be corrected by the controller.

- -p

Figure 10. Camera Mount and Starting Position

30

The vision-robot system is calibrated to relate camera

pixel positions in the camera's x-y plane to robot positions

in the robot's WCS x-y plane. Since this work is two-

dimensional and the x-y plane of the camera's FOV is parallel

to the robot's x-y plane, complicated transformations

relating the position of a target in the camera's FOV to the

location of the robot's end-effector are not required. Thus,

during Subtask 2, the system is not interested in the

coordinate relationship between the robot's location with

respect to a target placed in the camera's FOV. The vision

system simply provides the x and y offset position of the

target with respect to the robot's current x and y position.

Therefore, a simple one-to-one relationship exists between

the location of the target in the camera's FOV and the

robot's work space.

The computer program, track.targ, (whose flow diagram is

shown in Figure 11 and program listing is in Appendix B) uses

information from the vision system to correct any offsets

between the centroid position of the target and the center of

the camera's FOV. Once the target is placed anywhere in the

camera's FOV, its centroid position is transmitted to the

robot controller. This provides the information necessary to

command the robot to position the arm, such that the center

of the camera's FOV is directly over the target's centroid.

31

I I
I I

II! II I
jI TRACK.TARG H I

I I i? I

I... II

I H Ifl initialize i
11 U.INITVISION '--,communicationl

Ft I I

*S]i,, :vision sys

I IIU.TAKE.PICTURE !-- takes a
H, , I :picture e

----- ------- -.'.I I I

* _:moves

/ target

IS no F TYPE "PLEASE POSITION F
I TARGET IN . THE TARGET IN THE H

FOV CAMERA'S FOV'

Idetermine target'sl
T/ : centroid

Iis no
TARGET U.WHERE.ARE.YOU.PROTO

<CENTERED

S] ~yes 1r: :::-: --=:::::I I F -n , - :move

.. CENTER I-:arm to I
:correct

I I : z== r:' :offset I

* Programs starting with a 'U.' are system programs.
** This section is referenced by other flow diagrams. I

Figure 11. Software Flow Diagram of track.targ

32

Subtask 3: Camera on Arm: Tracking and Acquiring

This subtask builds on the second subtask by instructing

the vision-robot system to move towards the target a

predetermined distance while it is tracking. This simulates

the refueling nozzle approaching the refueling port. The same

closed loop, static look-and-move visual control scheme is

employed, with the additional capability of enabling the VRS

to move towards the target.

To provide the VRS with the distance of the target to

the camera, the vision system is trained with the target at

nine different locations, 25 mm apart, along the camera's

pointing axis. When the target is at different distances

from the camera, the image size varies. The larger the

image, the closer the camera is to the target. During

training of the vision system, the target is placed in the

first position at the maximum distance from the camera lens.

In the ninth position, the target is trained at the closest

position to the camera. Thus, the larger the target in the

camera's FOV, the closer the target is to the vision-robot

end-effector.

A white ball is used as the target to alleviate one

problem encountered with a fixed focus camera lens. As the

camera moves closer to the ball, the camera image becomes out

of focus. However, the image still remains circular in the

camera's FOV and the binary threshold computation produces

sharp boundaries for the centroid computation.

33

L

The computer program, track.targ.scat, (whose partial

flow diagram is shown in Figure 12 and program listing is in

Appendix B) instructs the vision system to take a picture and

recognize one of the trained targets. Depending on which of

the nine targets is identified, the VRS knows the height of

the target from the camera. This method works fine for a

well defined target like a ball, however, an improved system

is required for a more complicated image.

The procedure described above, enables the VRS to obtain

three dimensional (x, y, z) information about the target

placed in the camera's FOV. The vision system takes a

picture to determine the x and y centroid position of the

target. The z position is determined once one of the nine

target images has been identified.

When a picture is taken, the VRS approaches the target.

To account for positional errors inherent in the vision-robot

system controller, the system converges towards the target in

increments, allowing the system to keep the target centered

in the camera's FOV. This convergence method minimizes the

tracking error. The target identified determines the

incremental distance the system will move towards the target.

Another picture is taken and the process is repeated until

the VRS is at the desired distance and position from the

target.

34

I FV ,1
I II Il

II TRACK.TARG.SCAT Ii I
SI I

I L..- : 7:"::77 =1 I

I I::i , : ~i : I! I

SI ::I
I I

-',determine target's
S/ centroid

..- 7 - 7-77
i no f

TARGET U.WHERE.ARE.YOU.PROTO
CENTERED

I '

_ identify I
: / :target I

yes

I I U.RECOGNIZE
.I. *..

SI CENTER.SCAT I

S.............
\:move arm l

:towards
:target's

* :centroid

S• Programs starting with a 'U.' are system programs.
I $$ This section is the same as the section marked in

Figure 11. I

Figure 12. Software Flow Diagram of track.targ.scat

35

L

Subtask 4: Camera on Arm: Search

This subtask completes the overall task of designing and

implementing a vision-robot system that searches for and

acquires a ball.

The computer program, search, (whose partial flow

diagram is shown in Figure 13 and program listing is in

Appendix B) instructs the VRS to go through a square conical

search, see Figure 14, covering the perimeter of the search

area first, then moving towards the center of the area. The

VRS moves in increments approximately equivalent to half the

camera's FOV. Moving in this fashion provides an overlap to

ensure the search covers the entire search area. The search

is broken up into 16 increments, as shown in Figure 14. Each

time the robot moves in the search pattern, a picture is

taken to check if the ball is in the camera's FOV. Once the

target has been acquired by the VRS, the procedures from

Subtask 3 are executed and the VRS visually servos itself

towards the target.

This completes the description of the system setup and

methodology for the closed loop, static look-and-move visual

servo control scheme. The dynamic look-and-move system is

presented in the next section.

36

I f II I

I Ii SEARCH If I
Si Ii I

I II

I If II init I I
II U.INITVISION IH-- comm I r- I
IlIf * Il I I the VRS |
L I moves one I
I r~I I increment i
II I :vision I-- at a time |

U.TAKE.PICTURE II--:system I I until the I
J 2 II : takes a J target is I

. picture I acquired iIi a _ I
I |

I Iisi
< AnoI

I I
I I
yesI

SEARCH.TRACK

I:--.-----.--,._-. --,. --'-L' " 7 -,I-:-":,

SEARCH.CENTER

I, H

2 Programs starting with a 'U.' are system programs.
B I

• *SEARCH.TRACK does the same tasks as TRACK.TARG.SCAT I

- 222 SEARCH.CENTER does the same tasks as CENTER.SCAT I

Figure 13. Software Flow Diagram of search

37

"3 I 2 I1 I
.-. .- I....... i

4
"I I

13 i 12
F 7I

I 5 14 1 16 ' 11
I Ii

A I5 I I
I -. L. . . . -I

15

I 6 1 10

..- - 1 i".

7 8 9

Figure 14. Square Conical Search

Dynamic Look-And-Move System

In this task, a closed loop, dynamic look-and-move

visual servo control system is designed and implemented.

This task repeats much of the work accomplished in Subtask 3.

The difference being in the approach-to-target motion of the

robot arm. The controller implemented in this task uses

dynamic visual servoing to guide the arm towards the ball.

38

A system with parallel processing is required to

achieve true closed-loop, dynamic visual servo control.

Because of computer speed limitations, this capability is

currently not possible for this integrated vision-robot

configuration. However, a form of dynamic control using

serial program execution is possible with the present

configuration. In VAL II program execution, once a command

has been executed, the processor immediately executes the

next instruction, even if the last instruction has not been

completed. Unimation refers to the procedure as "procedural

motion" (17). Thus, when a command to process a picture is

executed before arm motion has stopped, the requirements for

dynamic, visual servo control are met. The situation exists

when the arm moves towards the target.

As the arm moves towards the ball, the computer program,

track.targ.dcat, (whose flow diagram is shown in Figure 15

and program listing is in Appendix B) instructs the vision

system to take a picture and provide real time corrections

for any offsets occurring as the arm moves towards the ball.

This completes the description of the system setup and

methodology for this thesis; the results are now presented.

39

I IIr - - - - - - - - I: I

I II TRACK.TARG.DCAT I! |

I IU !I I

I I
I I I

I I

I I I
I I I

I identify
I :identify

S/ [:target
S*! .; .:: -::::: -:-.: ---.-::::::: :: I

yes '
SI U.RECOGNIZE I

SI L II , I

II i

I I !,:
I 7 ' :CENTER.DCAT I

S -.... move arm I
:towards
:target's

I �centroid

S * Programs starting with a 'U.' are system programs. I
S* This section is the same as the se-tion marked in

I Figure 11. I

Figure 15. Software Flow Diagram of track.targ.dcat

40

IV. Results and Discussion

Introduction

The goal of this thesis was to develop an integrated

vision-robot system (VRS) to visually acquire a target. The

VRS implemented two visual servo control techniques to guide

the system to the target. These two techniques included

static and dynamic, look-and-move visual servo control. Each

control technique was considered a separate task during

development and testing. The testing of each task of the

integrated VRS occurred simultaneously during development.

The results from each task were directly applied to

subsequent tasks. This chapter describes the results from

each task in the following sections.

Static Look-And-Move

The task of developing a static look-and-move visual

servo control system was divided into the following four

subtasks:

1. Develop an open loop, static look-and-move
system with the camera mounted above the robot.

2. Develop a closed loop, static look-and-move visual
servo control system with the camera mounted to the
third joint of the PUMA 560 that tracks a target
(white ball) against a black background.

3. From Subtask 2, develop a visual servo control
system to track and approach tue target.

4. Add to Subtask 3 by developing a scanning algorithm
to search for and acquire the target.

These subtasks are described in the following subsections.

41

Subtask 1: Camera Mounted Above the Work Space.

The first subtask was to develop an open loop, static

look-and-move scheme which has the video camera mounted above

the workspace. The purpose was to introduce the equipment

and verify the software and hardware interfaces between the

vision system and the robot. In this scheme, the camera was

mounted to a stand and positioned above the robot workspace.

The hardware and software interface was verified, the

vision-robot system calibrated, and the vision-robot work

frame established by following the procedures in the

Univision User's Manual. In addition, two targets were

trained to the vision system; a white 2 inch diameter circle

and a white 3 by 5 inch rectangle, see Figure 16.

Figure 16. Targets Used in Subtask 1.

42

Once the targets were trained to the vision system, the

program vision.demo, see Appendix B, was executed. The

programs executed in this demonstration successfully achieved

the open loop, static look-and-move configuration. Each time

a program was executed, the vision system identified the

target and transmitted its orientation and two-dimensional

centroid position to the robot controller.

The first program in the demonstration, ident.blobs, see

Appendix B, determined the number of targets in the camera's

FOV, identified the largest target, and provided the

orientation and two-dimensional centroid position of the

largest target in the FOV. This program also instructed the

vision system to highlight each target on the video monitor

with a white border. It was observed, for the processing of

the rectangular target, that the inter-processor

communication and image processing took approximately 2.3

seconds during program execution. This time varies depending

on how many targets are processed. Figures 17, 18, and 19

show the rectangular target placed in the work frame, the

highlighted digitized image displayed on the vision system's

video monitor, and the output to the user's terminal.

43

Figure 17. Rectangular Target Placed in Work Frame

Figure 18. Highlighted Digitized Image on Video Monitor

44

GOOD PICTURE THERE ARE 1.BLOB(S) IN THE CAMERA'S VIEW!

* THE LARGEST OBJECT IS A RECTANGLE $

THE X COORDINATE OF THE CENTROID (in mms) IS 32.3818

THE Y COORDINATE OF THE CENTROID (in mms) IS -1.655741

THE ORIENTATION IS -58.64832

PRESS <RETURN> TO CONTINUE

Figure 19. User Terminal Output

The second program, ident.blob.point.center, see

Appendix B, accomplished the same tasks as ident.blobs, with

the addition of instructing the robot controller to position

the robot eni-effector above the center of the target.

Figures 20, 21, and 22 show the circular target placed in the

work frame, the digitized image displayed on the vision

system's monitor once the image was processed, and the final

position of the robot's end-effector after program execution.

Figure 23 shows the results displayed on the robot terminal.

45

Figure 20. Circular Target Placed in Work Frame

Figure 21. Highlighted Digitized Image on Video Monitor

46

LV

Figure 22. Final Position of Robot End-Effector

GOOD PICTURE - THERE ARE 1.
BLOB(S) IN THE CAMERA'S VIEW!

"* THE LARGEST OBJECT IS A CIRCLE *

* THE X COORDINATE OF THE CENTROID (in mms) IS 45.65081

THE Y COORDINATE OF THE CENTROID (in mms) IS -1.617786

"i THE ORIENTATION IS -89.2925

n N

-PRESS <RETURN> TO CONTINUE

Figure 23. User Terminal Output

47

"The third program, point.center, see Appendix B,

accomplished the same tasks as ident.blob.point.center,

except it did not highlight or identify the targets. This

minimized image processing thereby allowing faster operation.

During tVz testing of the second and third programs,

several observations indicated parallax induced errors in the

end-effector's final position over the target when the target

was placed towards the edges of the work frame (see Figure

24). However, this thesis was focused on visual servo

control, therefore, these errors were judged as insignificant

and disregarded since they did not have any bearing towards

the success or failure of the research. This subtask's

purpose was to introduce the various systems and verify their

correct operation.

Figure 24. Digitized Image of Target Towards

Edge of Work Frame

48

In summary, this subtask introduced and demonstrated the

various hardware and software used throughout the research

effort. The results demonstrated the ability to successfully

implement an open loop, static look-and-move configuration to

point to the centroid of a target placed anywhere in the work

frame.

The results presented next address the essence of the

research effort.

Subtask 2: Camera Mounted on Arm: Tracking

Subtask 2 initiated the first step towards developing an

integrated, closed loop, static look-and-move visual control

system. This subtask enabled the VRS to track any target

placed anywhere in the camera's FOV. The camera was mounted

to the third joint of the PUMA 560 and software was written

to guide the movement of the arm based on visual feedback

received from the vision system.

The vision syftem was calibrated (using the procedures

outlined by the Univision User's Manual) from an initial

starting position based on robot joint positions,

#start.position. The initial starting position selected for

this research, aligned the camera perpendicularly to the

floor. The starting position was stored in software,

allowing the VRS to start from the same point throughout

testing and development. A vision-robot frame did not have

to be established as in Subtask I because the camera was

mounted parallel to the robot's end-effector. This

49

configuration considered the robot end-effector's current

location to be the center of the camera's FOV translated

along the camera's viewing axis.

Once a target (white ball) was placed in the camera's

FOV, the program track.targ was executed. The program

instructed the vision system to take a picture and provide

the two-dimensional position (considered an offset) of the

target's centroid. The program corrected the offset by

commanding the robot to move by an amount equal to the

offset. The program repeated itself until the user aborted

it, therefore, enabling the system to maintain track on the

target as the target moved. It should be noted that the use

of a high contrast target, i.e., a white ball against a black

background always guaranteed easy, unambiguous "target"

location. The general task of target location (finding an

arbitrary target in an arbitrary scene) was not considered

part of this research.

Robot motion continued until the vision system

determined that the target was within a window of + 10 mm

from the center of the camera's FOV. Ten millimeters was

selected to reduce the amount of time required to center the

target in the camera's FOV. Without any window, however, the

VRS oscillated continuously around the target, primarily

because of jitter in the video quantizer and robot

positioning system. Since the application for this thesis

involved the refueling of an aircraft through a refueling

50

port that is compliant within a 30 degree cone of insertion,

the use of a tolerance window should not be a problem. It

was observed that for this task, using the previously

described equipment, the time for the system to center itself

on a stationary target (white ball), place on one corner of

the camera's FOV, took approximately 2.0 seconds (• O.7

seconds was used in the image processing). Figure 25 shows

the sequential motion of the digital images on the video

monitor as the VRS visually servos itself to the target.

Figure 25. Sequential Motion During Visual Servoing

The oscillation mentioned above was due to errors

associated with the calculation of robot transformations and

with the image processing of the target. The errors associated

with the calculation of the desired final location in the robot

51

controller occurred "whenever a transformation is used to

define the destination of a robot motion" (17). The

transformation must be converted into individual joint

positions, inevitably inducing (small) errors (17).

Factors that can affect accurate image processing and

thus cause errors in measurements include:

1) Image contrast, intensity, and threshold

2) Focus and parallax

3) Vision calibration

4) Video noise/spatial quantization.

Most of the errors introduced by these factors were minimized

by using a white ball for the target and a black background.

The voltage threshold for the video system was set to the

middle of the threshold scale, which was the optimal value as

discussed in the Univision User's Manual (18). This provided

the maximum contrast and intensity during the research. A

ball also provided a circular image from any viewing angle

even if the lens was not in perfect focus. Parallax induced

errors were ignored since the VRS eventually aligned the

camera above the center of the target. As stated earlier,

the VRS was calibrated at an initial start position, thus

minimizing any calibration errors. The video noise/spatial

quantization errors are random and related to target size and

the related image boundary perturbations and can be ignored

due to the tolerance window.

Additionally, the vision system coordinates were scaled

52

by the scale factor determined during vision calibration.

With the camera mounted to the arm, it was observed that the

positive y direction of the camera's FOV was the negative y

direction of the robot's coordinate system. It was also

observed that the y component provided by the vision system

had to be further scaled by a factor of 2/3's to enable

accurate positioning of the vision-robot system. This

additional scale factor was necessary to account for the

difference in the x and y dimensions of each pixel element,

which is dependent on camera type.

Finally, to maintain active PD control, the robot motion

instructions for this task were broken up into no less than

10 continuous "back-to-back" move commands as opposed to 1 or

2 move commands. With less than 10 move commands, it was

observed that the VRS would continuously overshoot the

target. The overshoot problem resulted from the same errors

as those mentioned above for the oscillations and also during

the deceleration of the arm as it moved towards its desired

final location. The deceleration induced errors are due to

the P feedback control loop taking over control of the PUMA.

Breaking up the move commands allowed smooth robot motion

with minimal overshoot of the target.

In summary, the results of this subtask demonstrated the

ability of the VRS to successfully implement closed loop,

static look-and-move visual servo control techniques to track

a white ball placed anywhere in the camera's FOV.

53

Subtask 3: Camera on Arm* Tracking and Acquiring

Subtask 3 continued the work accomplished in Subtask 2

by enabling the VRS to move towards its target as well as

track it.

To provide the VRS with the knowledge of how far to move

towards the target, the vision system was trained to

recognize a target at a predetermined distance. To enable

quick image processing, only the area of the target was used

for identification (another reason for using a ball, because

its two-dimensional image is always a circle). From the

starting position defined in Subtask 2, it was determined

that joint 6 of the PUMA 560 was approximately 350 mm from

the floor. From this initial position, the VRS was trained

to the white ball target. This initial target, referred to

as Target 1. was assigned to the first of nine locations in

the vision system's memory. Each subsequent location in

memory was trained with the target 25 mm closer than the

previous target. Therefore, if Target I was identified by

the vision system, joint 6 would be 350 mm from the target

and 150 mm from the target if Target 9 was identified.

Once the target was placed in the camera's FOV, the

program track.ball.scat was executed. The program

accomplished the same tasks as track.targ with the addition

of having the vision system identify the target (based on the

target's area). The program used this additional information

to instruct the VRS to move towards the target. Robot motion

54

continued until the target was at the desired distance away

from the VRS and within the 10 mm window discussed in Subtask 2.

As stated previously, the camera was mounted on the

third joint of the PUMA 560. The PUMA's controller defined

the robot's end position at its sixth joint with respect to

the robot base. It also doesn't use just the first three

joints to specify position when solving the inverse kinematic

solution for the final joint locations. This was not a

problem in Subtask 2, where only tracking of a target was

required. However, in the subtask described here, it was

found that the VRS lost camera sight (two-dimensional) of the

target as the VRS approached the target. Therefore, an

offset had to be programmed to account for the position of

the camera as the camera approached the target. This offset

correction enabled the VRS to successfully track and approach

the target.

To further minimize the positional errors

encountered during the VRS's approach to the target, the

program instructed the VRS to converge towards the target in

increments. This distance convergence approach proved

successful and it was observed that the time for the VRS to

approach and center itself above a stationary target, placed

at one corner of the camera's FOV, took approximately 5.6

seconds. Figures 26, 27, and 28 show the sequential motion

of the VRS and of the digital images on the video monitor as

the VRS visually servos itself to the target.

55

Figure 26. Starting Position of VRS

Ai

Figure 27. Intermediate Position of VRS

56

Figure 28. Final Position of VRS

Originally, the VRS was to move within 50 mm of the

target. However, oscillations occurred whenever the target's

imago in the camera's FOV encompassed an area greater than or

equal to half the viewing area of the camera. The

r,sr'i] lat ions were due to the video noise/spatial quantization

arid the transformation conversion errors discussed in Sub-

task 2. The situation was resolved by allowing the VRS to

approach the target no closer than 200 mm. Since the

application of this thesis involves the refueling of an

aircraft., the limited approach does not pose a problem. As

shown in the artist's conception of the robotic refueler in

57

Figure 29, the camera was mounted to the refueler's third

"joint, with the final location of the camera positioned above

and away from the refueling port, during the refueling

operation.

/ '

Figure 29. Robot Refueler (13:53)

58

Additional work accomplished in Subtask 3 enabled the

VRS to become a tracker if the target started to move around

in the camera's FOV. This was an unlikely event for an

application involved with refueling a stationary aircraft,

however, it could be useful for other applications where the

target is allowed to move.

In summary, the results of this subtask demonstrated the

ability of the VRS to successfully implement closed loop,

static look-and-move visual servo control techniques to track

and approach a white ball placed anywhere in the camera's

FOV.

Subtask 4: Camera on Arm; Search

Subtask 4 completed the overall task of developing an

integrated %IRS that searched for and acquired the desired

target.

Once the target was placed anywhere in a predetermined

"search area", the program search was executed. The program

instructed the VRS to search for the target. Once the target

wa' found, Subtask 3 took over and visually servoed the VRS

to the target.

The search pattern for this subtask was divided into 16

increments in the robot's WCS x-y plane. The increments were

determined by measuring the window (perimeter) visible in the

camera's FOV. For the specific CRT display used in this

project, the size of the window was approximately 165 mm in

the x direction by 135 mm in the y direction. An overlap

59

between the increments in the search pattern was added to the

program, search, to ensure the entire search area was

scanned. Increments of 80 mm were used when the VRS moved in

the positive or negative x direction and in increments of 65

mm in the positive or negative y direction. The entire

search covered an area of approximately 400 mm by 380 mm,

this was limited by the work envelope of the PUMA. The time

required to find the target depended on where the target was

placed in the search area. The search time ranged from 0.2

seconds directly below the VRS to 22.0 seconds when the

target was placed in the center of the search area. Figures

30, 31, and 32 show only three of the sequential motions of

the VRS as it searched for the target and then servoed

towards it.

Figure 30. Starting Position of VRS

60

Figure 31. Intermediate Position of VRS

Figure 32. Final Position of VRS

61

During testing of this subtask, it was discovered if the

target's initial position in the search area was at a

distance greater than that for which the vision system was

trained, the target could not be identified. This did not

prevent the vision system from acquiring the target since

acquisition was effected by previously existing detection and

centroid computation inherent to the vision system. When the

search mode was initiated, the vision system decided that a

target was in the camera's FOV when its area (in pixels) was

greater than the smallest acceptable blob area set by the

user. For this research, the minimum area was arbitrarily

set to 10 pixels. To enable target verification following

acquisition, the VRS approached the target in 25 mm

increments until the vision system could identify the target.

Once the target was successfully identified, the VRS visually

servoed itself to the target as in Subtask 3.

Additional work accomplished in Subtask 4 enabled the

VRS to automatically restart the search if the target was

ever removed from the camera's FOV. This was an unlikely

event for an application involved with refueling a stationary

aircraft, however, it could be useful for other applications

where the target is allowed to move.

In summary, the results of this subtask demonstrated the

ability of the VRS to search for a target and successfully

implement closed loop, static look-and-move visual servo

control techniques to track and approach the target.

62

IA

The combined results of the four subtasks described

above achieved the desired goal of this research. The next

section discusses the results from additional research which

implemented a closed loop, dynamic look-and-move visual

control scheme in a tightly controlled environment.

Dynamic Look-And-Move System

The task of developing a closed loop, dynamic look-and-

move visual servo control system was an extension of the work

"accomplished in Subtask 3 of the Static Look-and-Move

Task. However, dynamic visual servo control was implemented

when the VRS moved towards the target.

Once the target was placed near the center of the

camera's FOV, the program track.targ.dcat was executed. From

all indications, the VRS performed in the same manner as in

Subtask 3. However, a difference existed in the movement of

the VRS towards the target. In this task, the robot motion

instructions were broken up into only 2 continuous "back-to-

back" move commands as opposed to the 10 move commands in

Subtask 3. Also robot motions were instructed to occur at

half the speed of those in Subtask 3. Under the concept of

procedural motion, a picture was taken during the second move

command in the program. The data from the image provided an

in-course correction to the VRS, thus allowing a smoother

approach to the target.

A limitation existed in this task because of the

oscillation problem discussed in Subtask 2. Therefore, the

63

target had to be placed near the center of the camera's FOV

for the VRS to work correctly. It was observed for this

task, that the time for the VRS to approach and center itself

above a stationary target took approximately 6.1 seconds.

This is a slower time than Subtask's 3, however, as stated

above, robot motions were at half the speed. When Subtask 3

was executed at the slower speed, it took approximately 7.8

seconds for the VRS to approach and center itself above the

stationary target. Figures 33, 34, and 35 show the

sequential motions of the VRS as it dynamically servoed

itself towards the target.

AN

Figure 33. Starting Position of VRS

64

Figure 34. Intermediate Position of VRS

Figure 35. Final Position of VRS

65

This completes the presentation of the results of the

research effort, the conclusions and recommendations are now

presented.

66

V. Conclusions and Recommendations

In this research, visual servo control schemes were

designed and integrated for a PUMA 560 robot arm which

derived its visual information from a MIC vision system.

The vision system's camera, with fixed focused lens, was

rigidly mounted to the third joint of the PUMA. The two

control schemes researched involved static and dynamic, look-

and-move visual control techniques. These techniques

successfully implemented and demonstrated the concept of

using a robot, equipped with a vision sensor system, to

ground refuel an aircraft.

Conclusions

Two conclusions were drawn from the success of this

research effort. First, the results presented in Chapter IV

proved that the closed loop, static look-and-move visual

servo control vision-robot system (VRS) could successfully

find and move towards a well defined target, a white ball,

placed in a designated search area. The vision system was

used to identify the target and determine its two-dimensional

centroid position with respect to the robot's end-effector.

Because one camera with a fixed focus lens was used, a crude

method was developed to determine the distance from the

target to the camera. As the camera approached the target,

the target's image grew larger with respect to the camera's

67

field of view (FOV). Therefore, by training the target to

the vision system at different distances, the vision system

could determine, by which target was identified, the distance

from the target to the VRS. This distance measurement along

with the centroid position measurement provided three-

dimensional information about the target. This method worked

adequately for a well defined target like a ball, however, an

improved method would be required for a more complex target.

Finally, the results from Chapter IV also proved closed

loop, dynamic look-and-move visual servo control techniques

could be successfully implemented. However, due to slow

computer processing and the inability to implement parallel

processing, limitations existed with this control technique.

These limitations were overcome by using procedural motion.

During movements of the VRS over large distances, dynamic

visual control could only be successfully implemented. This

situation only occurs when the VRS moves towards the target.

Thus, although limitations existed in the closed loop,

dynamic look-and-move visual control technique, excellent

results were achieved when the target was initially placed

near the center of the camera's FOV.

68

Recommendations

The work accomplished in this research effort provides a

solid foundation on which to continue work in areas of

robotics and vision. The following are recommendations for

continued research in areas related to this thesis:

- Implement the visual servo control techniques

presented in this thesis on the Robotics and Automation

Laboratory (RAL) Hierarchical Control System (RHCS) (9). The

R1{CS will be the primary system used for research with the

PUMA 560 at the Air Force Institute of Technology (AFIT).

The RHCS also allows the user to specify which joints are

controlled. This alleviates the problem associated with

solving for position using inverse kinematics.

- Using the RHCS, develop a parallel processing

capability, to enable real-time, closed loop, dynamic look-

and-move visual servo control for all robot motions.

- Decrease the computer processing time involved during

inter-computer communication by developing a quicker, more

efficient method for transferring messages between the two

computers. Almost twice as much time was spent on

communication than image processing (about 0.5 sec. for

communication and 0.3 sec. for image processing of the ball

target). A total processing time of less than .1 seconds is

required for real-time visual servo control (14:214).

69

- Implement various image processing techniques

currently in existence at AFIT to enable the acquisition of

more visually complex targets against an arbitrary

background.

- Implement a more efficient method to determine the

distance to a target. Various techniques include using the

following: auto focus camera; stereo vision; or sonar.

- Remount the camera on joint three at an angle, such

that the center of the camera's FOV will be the at the center

of the robot's sixth joint, only translated along the z axis.

This will alleviate the requirement for programming an offset

for the camera location.

- Obtain a camera which weighs less then 5 kgs and mount

it to the sixth joint. This would be valuable to

applications where the target's orientation is important.

70

Appendix A

Equipment and Interface Descriptions

This Appendix contains brief descriptions of the

hardware and software used in this research effort. Part 1

contains sections of Chapter I from (16) which is an

introduction and description of the PUMA Mark I1, 500 Series,

Robot System (in particular the PUMA 560). Part 2 is a copy

of the prefatory information from (18) which provides an

introduction and description of the Machine Intelligence

Corporation's (MIC) Vision System. Finally, Part 3 is a copy

of (19) which contains descriptions of the interface software

between the MIC Vision System and Unimations' VAL II

programming language.

A miniature Table of Contents follows:

Table of Contents

Part Page

1. Description of PUMA 560 72

2. Description of MIC Vision System 92

3. Interface Software Descriptions 106

71

Part 1: Description of PUMA 560 (16)

72

Figure 1-i. PUMA Mark 11, 500 Series, Robot System

73

CHAPTER 1

INTRODUCTION AND DESCRIPTION

1- 1. INTRODUCTION

The Unimate PUMA Mark II, 500 Series Robot (Figure 1-1), is an
advanced computer controlled robot arm system, manufactured by
Unimation Incorporated, A Westinqhouse Company, of Danbury,
Connecticut.

This equipment manual is to be used with VAL II and VAL PLUS
operating systems. It contains the introduction and desc.-iption,
installation, operation, maintenance, troubleshootinq, spare
narts list, appendixes, and a glossary.

Instructions on how to write and execute proqrams for the PUMA
Mark II system is aiven in the "User's Guide To VAL II," Part No.
398TI, or "User's Guide to VAL PLUS," Part No. 398AC1.

Note

Appropriate proqramminq manuals will be
sent to users of VAL II or VAL PLUS opera-
tinq systems.

The mechanical and electrical drawings are contained in two separ-
ate manuals as follows:

PUMA Mark II, 500 Series, Mechanical Drawing Set, 394ABI
(for VAL II or VAL PLUS operatinq systems).

PUMA Mark II, 500 Series, Electrical Drawing Set, 394AC1
(for VAL II or VAL PLUS operating systems).

Please note that personnel responsible for programming and opera-
ting the PUMA are expected to attend the training course given by
the Unimation Technical Training Department. They must also have
complete understanding of all information qiven in this manual
and the User's Guide. The combined information from the traininq
program and manuals will ensure safe and efficient operation of
the PUMA robot.

1-2. DESCRIPTION - PUMA SYSTEM AND SOFTWARE

1-2-1. PUMA SYSTEM. The PUMA robot system is desiqned to adapt
to a wide ranqe of applications. The basic units are the teach pend-
ant, software, controller, peripherals, and robot arm.

74 1-1

The system software that controls the robot arm is stored in the
computer memory located in the controller, which also houses the
operating controls for the system.

To teach the robot arm, either of two procedures can be used.
The teach pendant may be used to manually direct the movements of
the robot arm through each step of the task. These steps are re-
corded and then stored in the computer memory. The second method
is to write a program using software instructions. Position data
and software programs are entered into the computer memory
through the peripheral terminal keyboard or throuqh the teach
pendant.

In either case, the controller transmits the instructions from
the computer memory to the arm. Position data obtained from
incremental encoders and potentiometers in the robot arm are
transmitted back to the controller/computer to provide closed-
loop control of the arm motions.

The programs may also be stored external to the controller on a
floppy disk, a small flexible disk coated with a maqnetic medium
that provides a permanent record of the program. The floppy disk
unit is an optional peripheral.

Additionally, the PUMA can be programmed to interact with its
environment by using external input and output signals. External
input (WX) signals can be used to halt a program, branch to another
program step, or branch to another subroutine. For example, an ex-
ternal input signal can stop the program when safe operation is
impaired. External output (OX) signals allow the PUMA system to
control other equipment related to its work environment. If the
WX/OX features are used, at least one optional I/O module is re-
quired.

The robot arm executes the instructions transmitted to it by the
controller. The arm assembly is capable of rotational movement
around six axes (five axes for the PUMA 550). The axes of rotation
are shown in Figure 1-2.

1-2-2. SOFTWARE. The PUMA system operates on a high level lan-
quaqe called VAL II or VAL PLUS. In addition to being a sophis-
ticated programming language developed for assembly, it is a com-
plete robot control system.

1-2 75

WAIST (JOINT 1)

SHOULDER (JOINT 2)

ELBOW (JOINT 3)

I 'WRIST BEND (JOINT 4)

SFLANGE (JOINT 5)

PUMA 550

WAIST (JOINT 1)

SHOULDER (JOINT 2)

S•, ELBOW (JOINT 3)

WRIST ROTATION (JOINT 4)

, \ WRIST BEND (JOINT 5)

" ,I FLANGE (JOINT 6)

PUMA 560

Figure 1-2. Robot Arm: Joint Identification

76 1-3

qM -P -- -_ '

The VAL II or VAL PLUS programming language consists of a full
set of English language instructions for teaching and editing.
However, the VAL II control system has additional capabilities
that readily communicate with other computer based systems such
as vision and force sensors, as well as with supervisory computer
systems.

Robot programming can be accomplished by the teach-by-showinq
method using the teach pendant or by keyboard entry. The full
programming versatility can be realized only through the key-
board.

In either programming method, all taught points are stored as
transformations (referenced to a coordinate system fixed relative
to the stationary robot base), as precision points (position
information stored in the form of joint angles), or as compound
transformations (point locations referenced to previous locations
as a measurement from a Cartesian coordinate system fixed
relative to the tool mounting surface).

1-3. DESCRIPTION - CONTROLLER

The controller is the master component of the electrical system.
All signals to and from the robot pass through the controller and
are used by it to perform real-time calculations to control arm
movement and position (Figure 1-3). (Peripheral components are
discussed in paragraph 1-4.)

Operating controls and indicators are located on the front and
top panels of the controller. Connections for the robot arm,
terminal, floppy disk drive, I/O modules, and accessory are
located on the controller rear panel. Software is stored in the
computer memory, located in the controller. The software
interprets the operating instructions for the robot. arm, and the
controller transmits these instructions from the computer memory
to the arm. From incremental encoders and potentiometers in the
robot arm, the controller/computer receives data about arm
position. This provides a closed loop control of arm motions.

1-4 77

- __ 3i | I , -~.. I t , 1 -" - • .- - ; +e

ROBOT ARM

INTERCONNECT CABLE

ALTER

SUPERVISOR

" 78 (VAL ONLY)

I10
RT LMODULE

OR

TTY PENDANT

FF HIGH DENSITY

FLOPPY DISK DRIVE

Figure 1-3. PUMA System: Information Flow

78 1-5

The main internal components of the controller are listed below.
Their locations are shown in Figures 1-4 and 1-4A, and described
in paragraphs 1-3-1 throuqh 1-3-9.

a. DEC LSI-11 computer (DEC and LSI-11 are trademards of

Digital Equipment Corporation). (See Note.)

b. DLV11-J quad serial interface boards (two). (See Note.)

c. CMOS board. (See Note.)

d. "A" interface board (with boot chips)

e. "B" interface board (with clock)

f. Digital servo boards (six)

g. Power amplifier assemblies (one major and one minor)

h. Power amplifier control board

i. Input/output interface board (not shown)

j. Power supplies (two)

k. High power function board

1. Arm cable board

Note

1. The VAL PLUS operating system contains an
LSI-11/23 processor, 48K CMOS, (additional
memory optional), and one quad serial board.

2. The VAL II operating system contains an
LSI-11/73 Processor, 64K CMOS (additional
memory optional), and two quad serial boards.

1-3-1. LSI-11 COMPUTER SYSTEM. The LSI-11 system is a stand-
ard DEC unit containing a processor, memory and communication
boards. System software and user programs are stored in a
Complimentary Metal Oxide Semiconductor (CMOS) nonvolatile memory.
Communication between processor and other components is accom-
plished as follows:

a. A four-nprt asynchronous serial interface board
(DLVII-J) links the processor, terminal, teach pendant, and high-
density floppy disk. A second DLVII-J board is available to serve
as the link between the system processor and a Supervisory pro-
cessor system. This same board provides communications along
the real-time trajectory modifications link known as ALTER.

1-6 79

Note

SEE LABEL ON INSIDE OF TOP

COVER FOR EXACT BOARD LOCATIONS

EXTENDED I/O

INTERCONNECT BOARD

"A" DIGITAL
INTERFACE INTERFACE SERVO

BOARBOARD BOBOARDS (6)

INTERFACE
POWER AMPLIFIER

BOARD
CONTROL BOARD

-:7 ARM

DLV1 1-J CABLE
QUAD BOARD
SERIAL
INTERFACE

BOARDS

LSI-1 1
PROCESSOR POWER
BOARD /AMPLIFIER

ASSEMBLIES
CMOS (CONTROLLER
BOARD POWER

SUPPLY

LOCATED

BELOW)

AI --[

TRANSFORMER CAPACITORS

Fiqure 1-4. Controller: Board Location (Top)

80 1-7

u u

BACK PLANE

HIGH POWER
FUNCTION
ASSEMBLY___

+40V 25Aa

F3
BRAKES 1.5A DIODE BRIDGE

F2
-40V 25A

KI SOLID STATE RELAY

Fiqure 1-4A. - Controller: Board Location (Bottom)

1-8 81

b. The "A" interface board provides a communications link
to the "B" interface board (paragraph 1-3-2). The analog-to-
diqital converter that reads the potentiometers is located on
the "A" interface board.

1-3-2. "B" INTERFACE BOARD. The "B" interface board links the
LSI-11 system through the "A" interface board, to the servo drive
side of the control system. Command signals sent by the LSI/1l
are interfaced to a servo bus by this board. Once the commands
or data have been interpreted and acted upon, return signals are
sent to the LSI-11 throuqh the "A" interface board. Multiplexer
circuitry on this board provides analog-to-digital conversion of
motor potentiometer feedback and clock/terminator functions.

1-3-3. DIGITAL SERVO BOARDS. There are six digital servo
boards, one for each joint. Each joint is controlled by a
separate microprocessor. Position inputs from the computer, as
dictated by the LSI-11 calculations, are fed into the digital
servo board every 28 milliseconds. Digital information is fed to
a diqital-to-analoq convertor to generate the analog signal
required to drive the DC servomotors. Communications from each
digital servo board through the "A" and "B" interface boards, to
the LSI-ll, are controlled by a protocol using interrupt servic-
ing routines.

1-3-4. POWER AMPLIFIER ASSEMBLIES. For each joint, the output
from the digital servo board is fed to a power amplifier board,
where it is amplified to voltage and current levels high enough
to drive the servomotors. Outputs from the power amplifier
boards are fed to the arm through the connecting cable via the
arm cable board assembly (paragraph 1-3-10).

1-3-5. POWER AMPLIFIER CONTROL BOARD. The power amplifier
control board contains the following:

a. Six joint error indicator liqhts. When lit, these lights
indicate an overcurrent hardware failure.

b. A joint reset pushbutton. Pressing pushbutton resets joint
after error has been corrected.

c. Two high temperature indicator lights, Thl and Th2. When
lit, these lights indicate the presence of high temperature at the
power amplifier assemblies.

82 1-9

1-5. DESCRIPTION - ROBOT ARM

The robot arm is the mechanical component of the system incorpo-
ratinq 6 deqrees of freedom (5 degrees on PUMA 550), each con-
trolled by a DC servomotor. It is sufficiently flexible to be
taught a wide variety of tasks. Each member of the robot arm is
connected to another member at a joint, much like a human arm and
torso. Throuqh each joint passes one or more axes around which
the members of the arm rotate.

The members of the robot arm are shown in Figure 1-15; they are
the trunk, shoulder, upper arm, forearm, wrist, and qripper.
The robot arm members contain the various servomotors and qear
trains.

To achieve maximum strength with minimum weight, the upper arm
and forearm are of monocoque contruction. Monocoque is a method
of construction that uses the covering plates or "skin" of an
assembly to carry all or part of the stresses.

The axes of rotation and the ranges of rotation are shown in
Figure 1-16 and described in Table 1-3.

83 1-19

UPPER ARM
(INNER LINK)

SHOULDER

TRUNK

S~FOREARM/

S~(OUTER LINK)

S(Gripper not shown)

Figure 1-15. Robot Arm: Member Identification

1 -20 84

WAIST 3200
(JOINT 1)N 1SHOULDER

2500

+ _ (JOINT 2)

ELBOW 2700

, -+ (JOINT 3)

4

WRIST BEND 2000i \ " , • .(JOINT 4)

I FLANGE 5320
,(JOINT 5)

T PUMA 550

WAIST 320'

(JOINT 1)

"+ - SHOULDER 2500
(JOINT 2)

ELBOW 2700

(JOINT 3)

WRIST BEND 2000

\ ,\ + (JOINT 5)

- FLANGE 5320

+ (JOINT 6)

WRIST ROTATION 3000
PUMA 560 (JOINT 4)

Figure 1-16. Robot Arm: Degrees of Joint Rotation

85-

Table 1-3. Robot Arm Axes

JOINT DESCRIPTION

Waist - Joint 1 Joint 1 axis is perpendicular to the
mounting plane of the PUMA and coin-
cident with the centerline of the
trunk.

Shoulder - Joint 2 Joint 2 axis is perpendicular to and
intersects Joint 1 axis; it is coin-
cident with the centerline of the
shoulder.

Elbow - JJoint 3 oint 3 axis is parallel to the
Joint 2 axis.

Wrist - Joint 4 Joint 4 axis is perpendicular to and
(PUMA 560 only) intersects Joint 5 axis.

Wrist - Joint 5 Joint 5 axis (Joint 4 on PUMA 550)
(Joint 4 on is parallel to the Joint 2 and 3
PUMA 550) axes

Wrist - Joint 6 Joint 6 axis (Joint 5 on PUMA 550)
(Joint 5 on is perpendicular to and intersects

PUMA 550) Joint 5 axis (Joint 4 on PUMA 550):
it is coincident with the centerline
of the gripper mounting flange.

V'ach member of the arm assembly is driven by a permanent-magnet DC
servomotor driving through its associated gear train. Each motor
in the PUMA robot arm contains an incremental encoder and a poten-
tiometer driven through a 116 to 1 gear reduction. The proper
functioning of the PUMA requires control of the position and the
velocity of each Joint of the robot arm.

For a servo-controlled robot system, position must be measured
relative to a known initial, absolute position. The potentiometers,
ircorporated in the motor, are used to initialize the PUMA; that
is, to establish its absolute position. The initializing proce-
dure must be done each time the PUMA system is powered up. (Refer
to paragraph 3-4.)

The incremental encoders are mounted on the shaft of each motor
and provide position change and velocity signals for the servo
system. Position change signals are read from the encoders, and
velocity signals are calculated. Approximately 32 times during
each 28-millisecond window of the digital servo system, the
signals from the encoders are compared to the calculated position
and any necessary correction signals are generated.

1-22 86

The servomotors for the major axes (Joints 1, 2, and 3) are
equipped with electromaqnetic brakes. These brakes are acti-
vated when vower is removed from the motors, thereby locking
the robot arm in a fixed position. This safety feature removes
the risk ot injury or damaqe that could result from the arm
collapsing it Power is accidentally removed.

Power for the motors is supplied through the cable connecting the
robot arm and the controller. Feedback siqnals from the incremen-
tal encoders and potentiometers are also carried by this cable.

1-5-1. WAIST - JOINT 1. The motor for Joint 1 is located out-
side the trunk, on the base castinq. The qear train is shown in
Fiqure 1-17. For clarity of description, the qear train is divided
into three sections (Table 1-4).

Table 1-4 Joint I - Gear Train

COMPONENT DESCRIPTION

Motor shaft spur A spur pinion cut into the end of
pinion and two gears the motor shaft drives two spur

gears simultaneously.

Note

Pinion: Of the two gears that
run together, the pinion has
the smaller number of teeth.

Gear; Of two gears that
run together, the gear has
the greater number of teeth.

Idler shafts The two spur qears transmit power
throuqh idler shafts that have
different torsional rigidities.
In one, torsional rigidity is high.
This prevents any appreciable
twisting of the shaft around its
lonq axis (called windup). The
other shaft has a lower torsional
rigidity desig'ned for a predeter-
mined amount of windup to preload
the entire gear train eliminating
backlash.

Two pinions and the Two more pinions, at the end of the
bull gear idler shafts, drive the bull gear.

87 1-23

1-6. SPECIFICATIONS

Table 1-5 contains the specifications for the PUMA system.

Table 1-5. Specifications

ITEM SPECIFICATIONS

Robot Arm

Axes Six revolute axes (5 axes for PUMA
550)

Clearance Required Spherical volume with shoulder at
center: 0.92 m (36.2 in.) radius

Mounting Orientation Must be mounted vertically. Base
must be level within 1 degree.
Vertical can mean right side up or
upside down --- NOT horizontal.

Weight 534.N (120 lb)

Drive Electric DC servomotor

Mounting Surface Four 10-24 holes on a 0.041 m
for Gripper (1.625 in.) diameter bolt circle

Maximum Inertia Load
(Including Standard
Gripper: Toggle
Type - P/N 510-9013;
Parallel Type - P/N
510-0100)

Wrist Rotation - NOT to exceed 5.7 in.-oz-sec 2 (e.g.,

Joint 4 (PUMA 560) 5.5 lb steel, 4 in. dia. disk mounted
5 in. from wrist rotation axis).

Wrist Bend -
Joint 4 (PUMA 550) NOT to exceed 5.7 in.-oz-sec 2 (e.q.,
Joint 5 (PUMA 560) 5.5 lb steel, 4 in. dia. disk mounted

5 in. from wrist bend axis).

Flange Rotation
Joint 5 (PUMA 550) NOT to exceed 0.5 in.-oz-sec 2 (e.g.,
Joint 6 (PUMA 560) 5.5 lb steel, 4 in. dia. disk cen-

tered on axis of rotation).

Static Force at Tool 58 N (13.0 lb) maximum

88 1-29

Table 1-5. Specifications (Cont)

ITEM SPECIFICATIONS

Position Repeatability +0.1 mmu (+0.004 inches) within pri-
mary work envelope (as measured to
center of the tool mounting flange).

Gripper Control Computer controlled, pneumatic
0.003 m3 /s at 710 KPa (6 ft 3 /min
at 100 psi)

Tool Acceleration 1 g maximum (with maximum load)

Tool Velocity 1.0 m/s (3.3 fps) maximum (with max-
imum load within primary work enve-
lope)

Software Movement Limits

Waist - Joint 1 5.59 r (320 deg)

Shoulder - Joint 2 4.36 r (250 deg)

Elbow - Joint 3 4.72 r (270 deg)

Wrist - Joint 4 5.24 r (300 deg)
(PUMA 560)

Wrist - Joint 5 3.49 r (200 deg)
(PUMA 560)

Wrist - Joint 4
(PUMA 550)

Wrist - Joint 6 9.29 r (532 deg)
(PUMA 560)

Wrist - Joint 5
(PUMA 550)

Joint Angular Resolution

PUMA 550/560

Waist - Joint 1 5.7557 x 10-3 deg/bit
Shoulder - Joint 2 4.17408 x 10-3 deg/bit
Elbow - Joint 3 6.7098 x 10-3 deg/bit

PUMA 550

Wrist - Joint 4 5.00625 x 10-3 deg/bit
Wrist - Joint 5 4.69177 x 10•3 deg/bit

1-30 89

Table 1-5. Specifications (Cont)

ITEM SPECIFICATIONS

PUMA 560

Wrist - Joint 4 4.7361 x 10-3 deg/bit
Wrist - Joint 5 5.00625 x 10-3 deg/bit
Wrist - Joint 6 4.69177 x 10- deg/bit

Encoder Index Resolution
(One Motor Revolution)

PUMA 550/560

Waist - Joint 1 5.7557 deg
Shoulder - Joint 2 3.3392 deg
Elbow - Joint 3 6.7098 deg

PUMA 550

Wrist - Joint 4 5.0062 deg
Wrist - Joint 5 4.6918 deg

PUMA 560

Wrist - Joint 4 4.7358 deg
Wrist - Joint 5 5.0062 deg
Wrist - Joint 6 4.6918 deg

Velocity at SPEED 100

PUMA 550/560

Waist - Joint 1 82.1 deq/sec
Shoulder - Joint 2 53.5 deg/sec
Elbow - Joint 3 122.1 deg/sec

PUMA 550

Wrist - Joint 4 241.4 deg/sec
Wrist - Joint 5 227.8 deg/sec

PUMA 560

Wrist - Joint 4 227.8 deg/sec
Wrist - Joint 5 241.4 deg/sec
Wrist - Joint 6 227.8 deg/sec

90 1-31

Table 1-5. Specifications (Cont)

ITEM SPECIFICATIONS

Maximum Linear Velocity
at Speed 100 468 mm/sec

Maximum Cartesian and
Joint Acceleration
(= Deceleration) Time.
Rest to Maximum Velocity

Cartesian 0.112 sec
Waist - Joint 1 0.112 sec
Shoulder - Joint 2 0.112 sec
Elbow - Joint 3 0.056 sec
Wrist - Joint 4 0.056 sec
Wrist - Joint 5 0.056 sec
Wrist - Joint 6 0.056 sec

Maximum Envelope Error
(Joint Excursion to

Fatal Error)

PUMA 550/560

Waist - Joint 1 11.51 deg
Shoulder - Joint 2 8.34 deg
Elbow - Joint 3 13.41 deg

PUMA 550

Wrist - Joint 4 10.01 deg
Wrist - Joint 5 9.38 deg

PUMA 560

Wrist - Joint 4 9.47 deg
Wrist - Joint 5 10.01 deg
Wrist - Joint 6 9.38 deg

Controller

Dimensions 0.48 m (19 inches) W x 0.311 m
(12.25 in.) H x 0.050 m (19.7 in.) D

Weight 356 N (80 Ib)

1-32 91

Part 2: Description of MIC Vision System (18)

92

Model VS- 100
MACHINE VISION SYSTEM

fi

MACHINE VISION SYSTEM

* For Inspection, Material Handling, and Assembly
"* Simplified Light Pen Control
"* Easy Programming by Showing
"* Versatile Camera Inputs
* Programmable Output Control
"* Powerful Computing Capability

C

Machine Intelligence Corporation
1120 San Antonio Road
Palo Alto, California 94303
(415) 968.4008

93

2

Model VS-
Functional Block Diagram

i2 5•?,r56 I• -- MixerI

S Monitor

""ase(an of f tps 256 x 256 256 x pfi

micocopuer.taccptsimgesfr mag upmtaObec reoniinis prfrmd sig
twspaat cmeas(A, hihayBufeoernaesnigbr clasifier Lpraingh oen ausr

C amer JI
Control

ate wih astrbe amptrgeredauner VS-i 00 seetbesustothfeursPece

cotrl.Th iagpocssnuitrw (BI nmaeProcsican esrmnsargoptdt n

r dnto poftsl

I 1 11BsModular

sing.fficintaloriths et inth S 1 adjustx"able� t�hreshjEc nis

(C) pf64K a Parcc isf Serial anct
t r ea tur Memoryn Interfm Interface Control

SSensor
C Recorder o

•Manipulator

Theory of Operation tiguous region. UP to 13 distinguishing features
The VS--100 consists of one or more such as area, perimeter, center of gravity,

cameras (any of four types), an image proces- number of holes, andl minimum and maximum
sing unit, and a Digital Eqlui~pment LSI-1 1 radii can be extracted for each region.
microcomputer. It accepts irnages from up to Object recognition is performed using a
two separate cameras (A), which may be oper- nearest neighbor classifier operating on a user-
ated with a strobe lamp triggered under VS-100 selectable subset of the features. Precise
controi. The image processing unit (B) numerical measurements are computed to in-
transforms camera images into binary (b~ack dicate the degree of confidence in the sys~tem's
and white) images that are run-length encoded recognition of the object. If the degree of matr"
for data compression and subsequent proces- of the selected features is above a user-
sing. Efficient algorithms operating• in the. LSI-1 1 adjustable threshold, the object is rejected as
(C3) perform a complete connectivity analysis of unkrown or defective. Once an object is
the encoded images, building data structures recognized, its position and orientation are
that represent essential features of each con- determined.

94

3

"ision System
An Eye on the Future The VS-100 accepts on-off signals from

The age of automated vision is here. In the external devices, and can in turn send on-off
factory, non-contact visual sensing can be used signals to other devices-up to sixteen in all.
for inspection, measurement of critical dimen- Three serial ports are available for commun-
sions, parts sorting, programmable part presen- ication with other computers-large hosts for
tation, sensing for process control, and system development or microcomputers for
automated assembly For a modest capital in- controlling gates, X-Y tables, industrial robots,
vestment (that won't increase for multi-shift or other manipulators. Special interfaces to
operation), machine vision provides: other PDP-1 1 computers and several robots are

available. The LSI-1 1 bus allows efficient
"* enhanced productivity, interaction with a wide range of compatible
"* improved quality control, and devices (such as A/D and D/A converters and
"* greater reliability other LSI-1 1 modules) which you can add for

Machine Intelligence Corporation has your own purposes,
utilized the results of over a decade of
government-sponsored research in automated A Cost-Effective Application Device
vision and engineered the VS-100 Vision
System-a rugged. versatile, complete unit The many sophisticated features of the
designed for industrial applications. VS-100 have been engineered for fast, consis-

tent operation in a production environment.

The VS-100 Vision System Where the system can be used without a large
The VS-100 is a highly advanced system, investment in ancillary equipment, the cost of

with both a broad range of image processing the unit can be justified for a one-shift opera-
capabilities and ease of use. It recognizes and tion. In ,nost instances, a complete system in-
inspects images of complex objects against a cluding the VS-100 and some computer-
contrasting background in real time. The objects controlled manipuiation provides adequate
can be anywhere in the field of view, in any return on inves.ment for a two-shift operation.
orientation, even on a moving belt. Thus, a The VS-100 provides high reliability: it operates
workpiece randomly oositioned on a belt or a at full accuracy around the clock, every day of
table can be located precisely, so that it can be the week. Battery power backup is an available
inspected, or acquired and manipulated by an option. Application-specific functions can be
industrial robot or other positioning device, programmed by our staff.

Ease of Use
A most striking feature of the VS-100 is its What the VS-100 Can Do for You

numan engineering. The VS-100 can be trained Examples of applications in which the
tc& analyze new objects sirnmly by showing them VS-100 can improve product quality and reduce
*c the system. Interact!cns with the system are costs include:
menu-driven, using iighlt-ce;• nput; for most Inspection-
apolications, users never need to touch a Integrity and completeness
Keyboard! Easy-to-use menus aliow selection of Shape and size defects
the threshold level, relevant features, and other Flash
important parameters for specific applications. Number, size, and positioning of holes
System control is by light pen, too, Calibration, Cosmetic stains
training-by-showing, and storing and loading of Cracks ard burrs
orototype data can easily be done, with Measurement of critical dimensions
minimum training. Sensor-controlled acquisition and

A Complete Developnme, t Tool manipulation-
Because of its generality and simplicity of Workpiece sorting

,ise, !he VS-1i00 is ideal for developing and Workpieces randomly positioned on
assessing applications of visual sensing. The conveyors
VS-l0o is a complete system including display, Manufacturing processes requiring visual
light pen, storage device fcr prototype informa- feedback
,ion and a camera of your choice, as well as Fastening operations
the visual processing unit. Yet its modular, In-prccess inspection
exoandable design permits easy system integra-
tion.

95

4

SPECIFICATIONS
Model VS-100 Vision System

General Features
* Human engineered to provide interactive menu-driven selection of threshold level, relevant features and other important

parameters for specific applications, using light-pen input.
* Training-by-showing for simplified programming.
* Binary threshold settable by either light pen (interactively) or by program control.
e Settable black or white background.
* Fast run-length data compression hardware.
e Single pixel noise rejection-optionally settable.
9 Software windowing of image area by light pen control.
* Menu-driven connectivity analysis software.
e Optionally reprocessing of selected image data.
* Menu-driven feature selection and calibration.
* DEC LSI-1 1/2 computer with EIS/FIS and 64K Byte RAM.
a Cassette recorder for program loading and prototype storage.
* 2 strobe lamp triggers for "freezing" moving objects.
* 2 quad-slots or 4-dual-slots available on LSI-1 1 backplane for customized applications, e.g., AID, DIA, TTL interfaces.
* Processing time for many applications within a fraction of a second.

Input/Output
* Can accommodate up to 2 cameras, singly or in combination from the following types:

a. GE TN2200, 128 x 128 solid state array (standard)
b. GE TN2500, 240 x 240 solid state array (optional)
c Reticon LC600C256-1. 256 x 1 solid state array (optional)
d. Standard (RS-170) vidicon with external sync (optional)

* Light pen input
* 4-port serial RS-232C. RS-422 or RS-423 interface (DLV1 1 -J)
* 16-bit parallel TTL interface (DRVl)
* 2 frame buffers for up to 256 x 256 pixel arrays (binary)
* 1 display buffer (256 x 256) for graphics and text overlays
* 1 12" TV Display Monitor for displaying binary image data, processed image data, and analog images

Communications Interface
"* Standard RS-232C. RS-422 or RS-423 serial communication ports for host and/or control computers.
"* Data rate jumper-selectable from 150 to 38,400 baud.

Manipulator Interface
* Bi-directional 16-bit parallel interface may be used for manipulator control applications,.-communication protocols

are available for several major industrial robots.

Mechanical
"* Cabinet enclosure, Can also be installed in a standard 19" rack.
"* Rack-mount dimensions: 5 1,h - high: 17" wide: 24" deep
"* Weight approximately 50 lbs.

Electrical
"* Power: 105-125 VAC, 60 HZ. 300 watts maximum
"* Optional: Battery stand-by supply, will maintain program and data storage for up to 4 hours.

Warranty
* The VS-100 Machine Vision System is guaranteed to be free of manufacturing parts and labor defects for a period of 90

days after delivery.
For further information or applications assistance, please write or call:

C

T 96
Machine Inielligence Corporalion
1120 San Antonlo Road
Palo Alto. California 94303
(415) 968-4008

SECTION I

INTRODUCTION

Univision is a camera-based processing system which enables VAL, the
UNIMATE control system, to locate and identify ohiects within a given
work area. The Univision system is composed of three subsystems,
namely:

(1) Area array camera sensors (maximum of two)

(2) Vision processor, including:

(a) Machine Intelligence Corporation (MIC) VS-!00 Processor

(h) Light pen and monitor for user interaction with the
vision system

(3) Univision Interface Kit enabling VAL, appended with vision
commands, to coummunicate with the vision processor. The Kit
includes:

(a) Interprocessor Communications Interface Card

(b) Internrocessor Communications Cables

(c) Vision software and eiagnostics (Oown loaeable from VAL's

floopy disk)

A block diagram of the hardware system is shown in Figure 1.1.

"The Univision system locates and categorizes stationary, objects within
its field of view on the basis of features extracted from each ohject's
silhouette - silhouettes generated from a spatially auantized imgqe
obtained from a single, fixed, overhead view. The control system, VAL,
transforms the object location/orientation information into robot
coordinates so that it can identify an appropriate user-defined,
object-dependent grasp point(s), and then pick up and move the object as
desired.

The key element in Univision is the VS-100 processor - a sonhisticated
image processing and pattern recoonition system. Most of its
sonhistication is hidden from the user by its easy-to-use, high-level,
menu-driven architecture. However, effective aoplication of the
Univision system will require, in most cases, that the user have a hasic
understanding of the "behind-the-scenes" operation of this device. The
next section will discuss the operation of the Univision/IAL control
system and will focus, in particular, on the VS-100 processing.

1.1 FUNCTIONAL OPERATION OF THE UNIVISION/PUMA CONTROL SYSTEM

Figure 1.2 shows a functional block diagram of the Univision/PUMA
control system. The diagram illustrates the processing functions

97

LIZ

c.

98

.18

L

72 IA

N C8

L-

Ji)
5A

61C

99

necessary to locate, recognize, and pick tip p~arts. The basic functions
are:

(1) Image Formation

(2) Boundary Detection

(3) Location and Orientation Computation

(4) Extraction of Orientation-Independent Features

(5) Object Classification (Recognition)

(6) Inter-Processor Communication

(7) Transformation of Object Location/Orientation from the Vision
Frame to the Robot Frame

(8) Control

We will now describe, in detail, the internal operation of
Univision/PUMA euring a typical vision-aided task. We'll consider the
task of picking up a wrench, located and orienteO arbitrarily within
Univision's field of view, ane placing it in a hin. The stens requiree
to complete this task are as follows:

1. VAL initiates the task by sending a message to the vision
processor asking it to freeze the current vidleo frame (picture)
for further processinq. One frame of video1 consistina of an
array of Nl x Ni2 analog voltages (gray scale) , each proportional
to the image intensity on a particular photo element (pixel) in
the solid state array, is sent to the vision processor. The *42
"column voltages" are read out continuotisly in a raster-type scan
for each of the Nl rows of the sensor array grid.

2. The vision system thresholds the video, on-the-fly, thus creating
a binary image or silhouette. The thresholding operation defines
each object's outline or boundary. To further simplify processing,
only the position of thresholt! crossinas (positive ane/or negative)
and the number of pixels, or run length, in between each crossing
are stored in image memory for each raster scan line. This coding
process is called run length encoding and results in near minimal
storage of the information in the binary oicture.

3. The vision system performs connectivity analysis which combines
all run lengths which are part of an object's silhouette. This
analysis also detects the presence of holes. Any objects whose
silhouettes merge are subsequently treated as a single object
after this step.

4. In parallel with "3.", the vision processor sums the centroies of
all of the run lengths for each silhouette to ohtain its centroid
location in camera coordinates. Orientation, using an" of a variVci

100

of orientation alqorithms, is also computed.

5. Feature extraction, the process of computing a set of quantities
that can be used in object (nattern) classification, is then
performed by the vision processor. In Univision, only orientation/
position-independent features are computed because a part must be
recognized regardless of its placement in the field of view. Typical
features computed are area, compaction (perimeter * * 2/area), second
moments, number of holes, etc. The VS-100 allows the user to choose
these features, among a set of 13 and aies the user in selectinq
those features which are best for a given application.

6. Object classification is then nerformed by statistically comparing
the computed features of the silhouette with those of silhouettes
generated by a set of prototype objects. Typically, the prototypes
are the set of objects that one would expect to "see" at the
workstation. The user trains Univision to recoanize these parts.
During the training orocess, the vision system establishes the mean
and variability of the features of the prototvoe silhouette over a
variety of positions and orientations within the field of view and
over the oossible stable states of the prototype object.

Silhouettes are classified as heinn a "member" of the orototype
group if the statistical "distance" between the features of the
prototype and the silhouette is shortest. This technique is called
"nearest-neighbor" classification. The following example, will
explain the process and ooint out the importance of prototype
traininq.

EXAMPLE: we will suppose that (1) our prototvpes are limited to
two objects - an adjustable wrench and a fixed head wrench; anH,
(2) the feature that most easily classifies them is the comoaction
index, c = perimeter * * 2/area. During trainina, we "show" the
vision system the two objects in a variety of possible locations,
and orientations. In the case of the adjustable wrench, we also
train on the expected range of wrench openings. This training
procedure defines the mean and variability of the features used
during classification. The soread (probability) functions of c
for the two objects after training are illustratee in Figure 1.3.
As shown, the adjustable wrench exhibits higher feature variability
because its perimeter can vary significantly, as a function of
opening, without significant changes in area.

The statistical distance from a measureO feature, c, to the average
feature of a prototype c is measured in terms of the number of
standard deviations d between c and c. If r defines the
prototype variability established during orototvping, then the
distance, d, is

c-d C---------
d1

101

iL

CE

(U'

102

-ZI

i T

tt

i2

102-

d is in a sense a probahilitv measure - as d increases, the
probability that the object matches the protot,'Pe decreases.
For example, if a > 3, and the spread function of the nrototype
feature is normally (Gaussian) distributed, there is less than a
1% chance that the object is a member of the prototvpe classification

The nearest neighbor classification procedure computes the "distance"
between the object feature(s) and each prototype's feature(s). The
object is classified as a member of the prototvne group if
(1) its feature "distance", d*, to the Prototype is shortest; and,
(2) d* d dmax where Mmax establishes a statistical confidence limit
beyond which the object cannot be classified - the probabilitv that
the object is a member of any prototype group is too small.

If we refer to Figure 1.3 we see then thatkan object with compaction
index, cl, would be classified as an adjustable wrench. Note,
however, that the numerical value of C1 is actually closer to
measured for a fixed head wrench. An object with feature c2 cannot

he classified since it clearly lies outsiee any reasonahle
confidence interval of beinq a member of either the wrench
classifications.

As can be seen, prototype trainina is key to reliable object
classification. Care must be taken by the usor to ensure that the
mean and variability of silhouette features measured durinq trainina
adec~uately reflects that which will he encountered in nractice.

The nearest-neighbor classification algorithm is done "hehinO-the-
scenes" in the VS-100 and normally requires no user intervention
excent during prototvye training. In this reqard, the VS-100
system helps the user to train prototvnes and allows him to
evaluate, improve, and predict classification performance before
he puts the system on-line.

7. Upon receiving a comnletion message on the oriqinal picture command,
VAL asks the vision processor for the location of any objects that
have been classified as a wrench.

8. The vision system reports the location and orientation of a
wrench (if there is one) in its field of view by sending an
appropriate message to VAL. Note that during the time the vision
system is locating and identifying objects, VAL is free to complete
other tasks. This overlanping mode of oneration minimizes the
effect of vision system processing on robot cycle times.

9. In the final step of the task, VAL:

(a) Transforms the location and orientation of the wrench from

103

vision to rohot coordinates using parameters defined during
calibration.

(b) Determines the location and orientation of a user defined
grip point. This feature allows a wide range of objects to
be picked up in a reliable fashion.

(c) Checks with the VS-100 to see whether the robot gripper will

have clearance to pick up the part at the grip location.

(d) Positions and orients the gripper.

(e) Picks up the wrench and places it in the hin.

Even a simple task like that described above recuires significant vision
processing capability. VAL has been programmed so that only a few,
high-level, vision commands are needed to access information ftom the Vqw
processor and to control its complex image processing and pattern
recognition ooerations. This capability frees the VAL user to
concentrate more on the important control aspects of a vision-aided
task.

.1.2 OVERVIEW OF THE MANUAL

The manual covers the theory, operation, maintenance, installation, and
user application of Univision. Chapter 2 is a copy of the VS-100
processor reference manual which descrihes the setup and operation of
the vision system and its peripherals. Chapter 3 is a supplement to
"Users Guide to VAL* that describes the new VAL commands used for
interrogation and control of the vision system. Chapter 4 is a user's
guide to Univision which covers (1) practical considerations in setting
up and using a Univision system; (2) setup of the camera system; (3)
installation of the Univision Interface Kit and start-up procedures; (4)
vision and vision-to-robot calibration; (5) prototype traininq; (6)
computing object to robot transformations; and, (7) application
programs. Chapter 5 contains an ooeratinq manual for the cameras(either
TN-2500 or MIC 22) used in the application. Chapters 6, 7, 8 cover the
spare parts list, mechanical drawings and electrical drawings
respectively.

Three sections are included in the Anpendix. Appendix A is the
diagnostics manual for the VS-100 descrihinq use of the diagnostic
software and other debugging procedures needed to isolate failures in
the VS-100 system. Appendix B describes in eetail the hardware and
software protocols used in the interprocessor communications interface.
Appendix C is a copy of an applications note covering lens selection for
the TN-2500 and TN-2200 (same sensor as the MIC-22) General Electric
camera sensors.

1.3 FUNCTIONAL SPECIFICATION

Parts Recognition:

104

Maximum number of trained orototypes resieent in
the system at a given time 9

Maximum number of objects that can be recoqnized
in the field of view 12
Reliable parts recognition requires adequate image contrast and
requires that the part silhouettes do not merge.

Vision Sensor Resolution:

MIC 22 1 Part in 128 of Camera Field of View

G.E. TN-2500 I Part in 244 of Wieth of Field

1 Part in 248 of Height of Field

Location and Orientation Measurement Accuracy

(Ignoring effects of parallax, and robot vision calibration errors)

Location Equal to or Better Than Vision Sensor Resolution

Orientation Dependent on Object anO on the Orientation
Feat'ire Selected

Environmental:

Camera w/o Enclosure 0
Ambient Temp 0-50 C
Humidity 90% Max Non-Coneensing

Vision Processor o
Ambient Temn 0-46 C
Humidity 90% Max Non-Condensinq

105

Part 3: Interface Software Descriptions (19)

106

This document attempts to describe all of the improvements that Univision
VAL-I1 has compared to Univisionl VAL-1.

Additions:

U.blink.blob - This routine will allow the user from the VAL keyboard
to outline the selected blob with either a wh.te or a
black border. This routine can be very helpful in
determining which blob the vision system is refering to.

U.Boot - Allows the VAL-I1 user to restart the vision system from the VAL-I
keyboard. It is a destructive restart in that it will delete all
prototypes. However, it can save the user from having to reload t
vision system software from tape.

U.Delete.Blob - This routine will allow the user to delete blobs from the
blob descriptor area. This will save vision system memory
allowing more trainings per prototype.

U.Erase - This routine will erase the text overlay, this will allow the
user to see a clear unobstructed digitized picture.

U.Recoqnize - This routine will compare all of the known prototypes to
to the specified blob and return the prototype id number
that best fits the blob. The routine will also return
the difference from the best fit, and the difference to
the second best fit.

U.Raster.Ltne - Allows the user to examine each line on the vision system
to determine which pixels are on or off.

Overall Improvements-

1. By selecting the fast option VAL-II can process other information
while the vision system is processing data. Upon completion VAL-I:
can readdress the vision system to get the processed data.

- 2. Overall the user has more options when analyzing the vision picture

Chanqes-

Findheap- Now is U.WHERE.ARE.YOU.PROTO. Information is contained in
array element [01.

Train- Handled by U.TRAIN.BLOB. User can now use teach pendant to
train prototypes.

VSTORE, VLOAD- Functions handled by U.S.AVER, however, U.SAVER does not
preserve switch settings, and orientation features.
U.SAVER uploads the Information into an array then the
user must store the array to disk as a series of real
values. U.SAVER will allow the user to delete prototype

Not Implemented-

Grip functions.

107

Routines U.Soot

Descriptions

This routine will allow the user to boot the MIC vision system. CAUTION:
during a reboot all prototype information will be erased. This routine has
been provided for use when the vision system hangs.

Usage:

exec boot

108

Created: Sept 8, 1985
Revision: 1.0

Routine: U.Blink.Blob

General Description:

This diagnostic routine will aid in locating blobs by outlining them with a
white or a black border.

Variables Description:

u.blobnum - This parameter must be set by the user before calling this
routine.

The leqal values range from one to the number of blobs that
are currently on the display screen.

u.color - This parameter must be set by the user before calling this

routine.

The variable has two legal values, zero and negative one.

If the variable is set ecual to negative one, the outline is
drawn in bright white.

If the variable is set eoual to zero, the outline is drawn in
black.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicat,
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.message(i - Reserved for system use.
s.numbytes - Reserved for system use.
s.nupwords - Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variab)
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:

U.Blink.blob directly calls:

S. transfer .message
S.get.message

Usage examples

.Program Test
1 III I II I :m muml guIls UUS SUUSSUI nsuUUUUsIB•sll 3.5 Bin * * BB * uuImumum

2s: This program will flash a blobs' border white and black until
3;- the user strikes the <REC> key on the teach pendant

109

4 PROMPT *PLEASE ENTER THE BLOB NUMBER TO BLINK -- > *,S.BLOBNUM
5 TYPE 'PRESS <REC> ON THE PENDANT TO STOPE
6 DO

* 7 U.COLOR--1 ;SET COLOR TO WHITEe CALL U.BLINK.BLOB; TELL VISION TO MAKE BORDER WHITE
9 IF S.ERROR THEN
10 TYPE *ERROR: HALTING' ; STOP IF AN ERROR
11 HALT
12 END
13 FOR INDEX - 1 TO 500
14 END
15 U.COLOR=0 ;SET COLOR TO BLACK
16 CALL U.BLINK.BLOB ;TELL VISION TO MAKE BORDER BLACK
17 IF S.ERROR THEN
18 TYPE "ERROR: HALTING" ;STOP IF ERROR
19 HALT
20 END
21 UNTIL PENDANT(l) BAND 1 1 1

110

Routine: U.Change.camera

General Description:

This routine will allow the user to select the camera that will be used.

Variables Description:

u.camera - This variable must be set by the user before this
routine is called. It must contain a number between
one and four. (inclusive) The number that this variable
contains will be the new camera number.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicate!
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.messaget) - Reservet for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variabl(
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:

U.Change.camera directly calls:'

s.transfer.messaqe
s.get.message

Usage Example:

.proqram usage
1 U.camera-]
2 CALL U.change.camera
3 CALL U.take.picture
4 FOR delay-l TO 500
5 END
6 U.camera=2
7 CALL U.change.camera
8 CALL U.take.picture
9 FOR delayal TO 500
10 END
exec usage,-1

111

Routine: U.Delete.Blob

General Description:

This routine will remove a blobs' features from the MIC vision system.
(It does not delete a prototype.)

Variables Description:

u.delete.blob.num - This variable must be set by the user before calling this
routine.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.message([- Reserved for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

s.system.error - This variable contains the'error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be ecual to zero.

Usage Example:

To remove blob descriptor 2 from the vision system
.DO U.DELETE.BLOB.NUM-2
.EXEC U.DELETE.BLOB

112

Routine: U.Erase

General Description

This routine will erase the any text or graphic overlays on the screen. The
routine does not erase the current picture in the buffer.

Variables Description:

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.svstem.error. If it returns as
FALSE, the routine completed with out an error.

s.message[] - Reserved for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be eaual to zero.

Subroutine Usage:

Erase directly calls:

S.transfer.message
S.get.messaqe

Usage Example:

.Program Demo
I Call U.erase; Erase vision screen to make look good.

113

Routine: U.rnitvision

General Description:

This routine will initialize the communication software. It will also set
default values for other the other subroutines. This routine must be called
before any other communication is attempted.

Variables Description:

Setup Section:

U.blobnum - Initialized value is one. (Set primary blob)
U.color - Initialized value is neqative one. (Color- white.)
U.exnected.shapes - Initialized value is nine.
M.fast - Initialized value is zero. (Slow Picture)

U.new.picture - Initialized value is zero. (No picture)
U.numblob.id - Initialized value is negative one. (Identify all)
U.picture.fast - Initialized value is zero. (Slow Picture)
U.camera - Initialized value is one.

Variables Section:

s.error - This variable indicates, in a logical fashior, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.exp - Reserved for system use.
s.fraction - Reserved for system use.
s.message[] - Reserved for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:

Initvision directly calls:

S. transfer .message
S.get.message

Usage Example:

.EXEC U. INITVISION

114

Routine: U.Recognize

General Description:

This routine will compare all known prototypes to the specified blob number and
return the prototype identification number that corresponds to that blob. The
routine will also return a two match numbers that indicate how close the blob
is to first choice, and how close of a match it is to a second choice.

Variables Description:

s.diffl - This variable contains the difference from the specified blob
to the best matching prototype.

s.diff2 - This variable contains the difference from the specified blob
to the next best prototype.

CAUTION: If the values contained in s.diffl and s.diff2 are very close, this
indicates that the vision system may not always correctly
differentiate between the two prototypes. To correct this requires
further training of both of the prototypes.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.svstem.error. If it returns as
FALSE, the routine completed with out an error.

s.message[] - Reserved for system use.

U.numblob - This variable must be set by the user before calling this
routine. It contains the blob number that you want compared
to all of the known prototypes.

s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

s.proto.id - This variable contains the ID number of the prototype that
best matches the specified blob number.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is PALSE, this variable will be equal to zero.

115

I : mm---mmmu m mm mmmmmmm-mm m m mmmlmm m m m • • mmM

Routine: U.Reprocess.picture

General Description:

This routine vill instruct the vision system to reanalyze the current image.

Variables Description:

s.blob.count - Upon completion of the routine "Take.picture* this variable
will contain a count of the number of blobs that are in the
picture. The count is not always equal to the number of
obiects but rather is the number of connected regions in
the imaqe.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.messagef] - Reserved for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.
u.fast - This parameter must be set by the user before calling the

routine.

u.fast has two legal values; zero or one.

If u.fast is set equal to zero, then the vision system
will take a slow picture. Slow means that the routine will
wait for the vision system to completely process the command
before proceeding.

If u.Fast is set equal to one, then the vision
system will take a fast picture. The routine will finish
before vision completes all processing. Variable
s.blob.count will be equal to zero regardless of the number
of blobs that exsist in the image.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:

Reprocess.picture directly calls:

S.transfer.message
S.get.message

116

Routine: U.Take.picture

3eneral Description:

this routine will instruct the vision system to take a picture of the current
field of view and process the image.

Variables Description:

s.blob.count - Upon completion of the routine aTake.picture" this variable
will contain a count of the number of blobs that are in the
picture. The count is not always equal to the number of
objects but rather is the number of connected regions in
the image.

s.error - This variable indicates, in a loaical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s.messagel] - Reserved for system use.
s.numbytes - Reserved for system use.
s.numwords - Reserved for system use.

u.picture.fast - This parameter must be set by the user before calling the

routine.

u.picture.fast has two legal values; zero or one.

If u.picture.fast is set eaual to zero, then the vision system
will take a slow picture. Slow means that the routine will
wait for the vision system to completely process the command
before proceeding.

If u.picture.fast is set equal to one, then the vision
system will take a fast picture. The routine will finish
before vision completes all processing. Variable
s.blob.count will be eaual to zero regardless of the number
of blobs that exsist in the image.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

ubroutine Usage:

U.Take.Picture directly calls:

S.transfer.messaqe
S.get .message

sage Examples

Program Test

117

U.picture.fast = 0; Set slow mode.Call U.Take.picture. Ask the vision system to take a picture.

If S.error then; Examine the variable to see if a problem occured.
Type =Bad Routine Error code is -- > ",/d,s.system.error

- The above line will display the error code and a short message.
Else

Type OGood Picture Blob Count is -- > ",/d,s.blob.count
1- The above will happen if everythino worked.

End

118

utine: U.Where.Are.You.Proto

neral Description:

is routine will analyze an image and return the coordinates of the centroid
a shape, along with an orientation measurement that can be used to create a

ansformation to locate an actual piece. The coordinates are returned in
its of pixels and it is the users responsibility to scale these pixels
to actual coordinates.

e orientation value is returned in radians and it must be converted to degrees
fore being used.

riables Description:

:olor - this variable has two legal values, negative one and zero. If the user
sets this variable to neqative one white shapes will be used. If the
the user sets it to zero the vision system will use black shapes.

?xpected.shapes - this variable will tell the vision system how many matches
to allow.

Oast - this variable will tell the vision system whether or not the action is

to occur in a fast mode of operation or not. If the user selects fast
by setting this variable to one the user must recall this routine
with this switch set to zero to collect the data.

iew.picture - this variable instructs the vision system to -I repicture,
0 for previous picture and I for picture.

iumblob.id - this variable contains the number of prototypes to find, if
you want the vision system to locate all of prototypes set
this variable to -1.

)lob.there[] - this variable indicates in a logical fashion if the prototype
is in the field of view. If the orototype is in the current
picture this variable will be set eoual to TRUE. If the

not in the field of view the variable will be

prototype is
set to FALSE. The element number is eauated to the prototype

number.

s.error - this variable indicates, in a logical fashion, the result of the

execution of the routine. If it returns TRUE, it indicates that

an error was detected by the vision system. The actual error code

will be found in the variable s.system.error. If it returns a
FALSE, the routine completed without an error.

s.message(] - reserved for system use
s.nuwbytes - reserved for system use
s.numwords - reserved for system use

s.orient.blob (I - Contains the anqular measurement of the prototype
whose number is the array offset.

s.system.error - This variable contains the actual error code returned
from the vision system. it should be referenced when
the variable s.error indicates that a problem occured
during the execution of the routine.

119

• • • • ,- . , , F..• •..

If s.error is FALSE, this variable will be equal to zero.

s.xcenter.blob] - Contains the value in pixels locating the prototype
whose number is the array offset, in the X direction.

s.ycenter.blob 11 - Contains the value in pixels locating the prototype
whose number is the array offset, In the Y direction.

Example: For prototype one in the picture, its X location will be found
in variable S.xcenter.blob[l1, the Y location will be found in
variable S.ycenter.blob[l], and finally the orientation will be
found in S.orient.blob[lJ. The number found between the brackets
is the prototype number. If an unidentified shape is in the
field of view, then it will be referenced by array offset zero.

120

POSSIBLE VALUES FOR S.SYSTEM.ERROR

Value Meaning

Corrective Action for the following errors:

Examine the variables that you are required to set.
Reset the bad one to a legal value.

1 Bad Parameter has been passed to the routine. The Routine
has not executed.

Corrective Action for the following errors:

None, a zero indicates a good run.

0 The routine ended with out any error detected by the vision

system.

Corrective Action for the following errors:

Reattempt the communication with the vision system.

Attempt to reload both the vision system and the VAL-I1 system.
if this error persists please note all actions that lead up
to this and contact Unimation Inc.

-1 Not yet implemented. The command number passed to the vision

system is not defined.

-3 The command number is out of range.

-5 The argument passed to the vision system is out of ranqe.

-7 The command number is reserved for future use.

-17 The variable name passed to the vision system was not recieved
properly.

-21 Bad Restart operation, this error should only occur during
the execution of the boot routine.

-23 Vision System restarted during command.

-129 Error from User routine.

-131 User routine number out of range

-133 Buffer to small for return.

-135 No User.

Corrective Action for the following errors:

Rename the one of the prototypes.

121

-19 Duplicate prototype name.

Corrective Action for the following errors:

This collection of errors most probably result from specifying
an illegal blob number.

-9 Blob is not active.

-11 Blob Specification is illegal.

-13 No Blob found.

Program: U.Saver

Tnstructions/Usage

U.Saver is a menu driven program that allows you to delete prototypes from the
vision system, copy them from the vision system to val, and copy them
from val to the vision system. It deals with only prototype information not
orientation features, or other switches.

To upload prototypes select option 1, then enter the prototype number.
Upon completion, store the real variable PROTOINFO[j to disk.

To download first load the real variables from disk and then execute the
program. Select option 2 and the prototype will be restored.

To delete a prototype select option 3, then enter a 1 to confirm.

122

Program: U.train.blob

Instructiona/Usage

U.Train.blob will allow you to add in a blobs description to a prototypes
description. (this is called training) It will use the primary blob.

The user simply enters the prototype number and then the number of training
times. By depressing <REC> on the pendant a picture will be taken, and the blob
will be added into the prototype.

Note: This program calls the user routine u.take.picture and sets the flag
u.picture.fast to zero (slow mode). This routine will not function
reliably unless the vision system has been initialized.

123

Appendix B

VRS Software Program Listings

This Appendix contains the software program listings for

the vision-robot system (VRS). The listings are grouped

together by the tasks in which they were accomplished.

A miniature Table of Contents of the program listings

follow:

Table of Contents

Task Page

1. Static Vision Servo Control Program Listings 125

vision.menu 126

vision.robot.cal 128
prototype.train 131
blob.store.or.delete 132
vision.demo.menu 133

ident.blobs 134
locate 135
ident.blob.point.center 136
camera.center.offset 137
point.center 138

track.targ 139
center 140

track.targ.scat 141
center.scat 143

search 145
search.track 147
search.center 149

2. Dynamic Vision Servo Control Program Listings 152

track.targ.dcat 153
center.dcat 155

124

Task 1: Static Visual Servo Control Program Listings

125

1 vision.menu

-PROGRAM Uision.menu
1

THIS PROGRAM PROVIDES A MENU FOR SELECTING VARIOUS OPTIONS
3 ; WHEN USING THE VISION SYSTEM. MOST OF PROGRAMS AVAILABLE,
4 ; ARE SYSTEM PROGRAMS FROM THE UNIYISION1.PG FLOPPY DISK.
5 ; THERE ISN'T MUCH DOCUMENTATION AVAILABLE FOR THESE PROGRAMS,
6 ; HOWEVER THEY ARE FAIRLY SIMPLE AND USER FRIENDLY.
7;
8 ; THE VISION/ROBOT SYSTEM MUST BE INITIALIZED BEFORE EXECUTING
9 ; ANY PROGRAMS.

10 ; THE VISION/ROBOT INTERFACE IS INITIALIZED BY CALLING
11 ; U.INITVISION.
12
13 ************************ARNI*N*****************************

14; * *
15 ; * ONCE THE INTERFACE HAS BEEN INITIALIZED FOR THE *
IG ; * IST TIME, THE VISION/ROBOT SYSTEM MUST BE CALIBRATED. *
17 ; * *
18 ; ***.*******
19

20 ,---------- CAUTION
2.1

22 ; IF THE CAMERA IS EVER MOVED RELATIVE TO THE ROBOT, THE
23 ; REFERENCE FRAME FOR OBJECTS VIEWED BY THE VISION SYSTEM
24 ; WILL ALSO BE MOL.IED. IN ORDER FOR THE ROBOT TO MOVE TO
25 ; LOCATIONS DEFINED BY THE VISION SYSTEM, A RELATIVE
26 ; TRANSFROMATION MUST BE DEFINED WHICH RELATES THE REFERENCE
27 ; FRAME OF THE VISION SYSTEM TO THAT OF THE ROBOT;
"28 ; vision.robot.cal WILL ACCOMPLISH THIS TASK.
129 "j j ;
35)

3i
382 10 TYPE /8, /C2; bees the screen & sniPsl 2 lines
33 TYPE *C****B
34 TYPE "*I
35 TYPE 1.WELCOME TO AFITIS VISION LABCA"
3G TYPE 2. VC
37 TYPE ** *
38 rum 0: initialize Parameter

39 TYPE /C2, /S
40 TYPE " THE FOLLOWING OPTIONS ARE AVAILABLE-"
41 TYPE /C1
42 TYPE 1. INITIALIZE VISION/ROBOT COMMUNICATION /C1
43 TYPE " .O ISION-TO-ROBOT CALIBRATION MS /C1
44, TYPE ""3. PROTOTYPE TRAINING ",/C1
45 TYPE " 4. PROTOTYPE STORAGE AND DELETION ",/C1
4G TYPE " 5. VISION DEMO ",/e1
47 7

548 TYPE '55 TYPE ***********************.*************************/C

49 TYPE"*"
50 TYPE -- -- -- - > WARNING < -- - - - - - - *"
51 TYPE "**"
52 TYPE ". BEFORE EXECUTING OPTIONS 3,4, OR 5, *"1
53 TYPE "* OPTIONS I AND 2 MUST BE ACCOMPLISHED *11
54 TYPE "*1"
55 TYPE ************************,/C1

56
57 TYPE "PLEASE ENTER THE NUMBER OF THE OPTION "
58 PROMPT " YOU DESIRE --- > ", num
59 126so

63
G4
65
66

67 CASE INT(num) OF
68 VALUE 1 :
Be CALL u.inituision; INITIALIZE VISION/ROBOT SYSTEM
70 TYPE /C2
71 PROMPT "==> INTIALIZATION COMPLETE, PRESS <RETURN> TO CONTINL
"/Z VALUE 2.:
73 CALL vision.robot.cal; PROGRAM TO CALIBRATE SYSTEM
74 VALUE 3:
75 CALL PrototyPe.train; USE THIS TO TEACH THE VISION SYSTEM
76 ; DIFFERENT OBJECTS
77 VALUE 4"
78 CALL blob.store.or.delete; THIS WILL STORE OR DELETE A
79 ; PROTOTYPE INTO/FROM THE VISION SYSTEM'S
8(0 ; MEMORY.
61 VALUE 5:
82 CALL vision.dento.menu; THIS EXECUTES THE VISION DEMO
63 ANY
84 TYPE "THAT NUMBER IS NOT AN OPTION PLEASE TRY AGAIN"

C5 GOTO I10
BG END
87
88
8 GOTO 1'0
90 RETURN

.END

127

•Pl vision.robot.cal
*.PROGRAM uision.robot.cal

1 ;
2 : THIS PROGRAM EXECUTES THREE SYSTEM PROGRAMS.
3 ; THE FIRST PROGRAM, u.boot, MEBOOTS THE VISION SYSTEM.
4 THIS HAS THE EFFECT OF DELETING ALL THE PROTOTYPES FROM
5 MEMORY. THEREFORE NEW PROTOTYPES MUST BE TRAINED.
6;
7 ; THE SECOND PROGRAM, u.I.teach, DETERMINES THE
8 ; SCALE FACTOR (s.K.scale) USED IN CALIBRATING
9 ; THE VISION-TO-ROBOT SYSTEM. THIS PROGRAM

10 ; RELATES THE CAMERA'S CHARACTERISTICS (ie. FOCAL
11 ; LENGTH) TO CAMERA PIXEL SIZE. IT DEFINES THE RATIO OF
12 ; THE DISTANCE BETWEEN 2 LOCATIONS IN ROBOT COORDINATES
13 ; TO THE DISTANCE IN PIXEL COORDINATES.
14 ;
15 ; A GOOD RANGE FOR s.K.scale IS APPROXIMATELY
16; l< s.K.scale < 2
17 ; where the units are in mm.
18
19 ; THE THIRD SYSTEM PROGRAM CALLED IS u.frame.teach
20 ; WHICH ESTABLISHES THE ROBOT/VISION WORK FRAME.
21

23 CALL u.boot; REBOOl "'. •SIGN SYSTEM
24
25 TYPE /8, /Ce
2S TYPE " =
27 TYPE "I I"
28 TYPE "! THE FOLLOWING PROGRAMS WILL ESTABLISH THE I"
29 TYPE "I ROBOT-VISION WORK AREA I'
30 TYPE "1

I"
31 TYPE ---- =-=--
32 TYPE /C2
33 ;
34 TYPE " STEP 1 -- > SELECT THE o VIEW CURRENT CAMERA, OPTION", /C1
35 TYPE " STEP 2 -- > FOCUS THE CAMERA USING THE CALIBRATION"
3G TYPE " DISK AS A GUIDE", /C1
37 ;
38 PROMPT "====== PRESS <RETURN> TO CONTINUE ==...."
39
40 CALL u.K.teach; SYSTEM PROGRAM USED TO DETERMINE s.k.scale
41
42 TYPE /C1, /B
43 TYPE "A GOOD VALUE FOR S.K.SCALE IS APPROXIMATELY", /C1
44 TYPE " < < s.k.scale < 2 ", /C1
45
46 PROMPT " PRESS <RETURN> TO CONUINUE = "
47
48 CALL u.frame.teach; SYSTEM PROGRAM TO WORK FRAME
49
50 TYPE /B, /C1
51 TYPE "== ====
52 TYPE "I I"
53 TYPE "I NOW A CHECK OF THE VISION-TO-ROBOT I"
54 TYPE "I TRANSFROMATION WILL BE VERIFIED AND I"
55 TYPE "I MODIFIED, IF NECESSARY. I"
56 TYPE "I I"
57 TYPE "
58 TYPE /B, /C1
59 128
60
6I

62

63
34 ;
65
66
67
68 MOVE #s.safe.position; MAKES SURE ARM IS OUT OF CAMERA'S FOYr 69 ; LCMR'
70 TYPE "== PLACE THE CALIBRATION DISK IN THE APPOXIMATE ='
71 TYPE "== CENTER OF THE CAMERA'S FOV *'" /Cl
72 ;
73 PROMPT 'u====z= PRESS <RETURN> TO CONTINUE ===
74 TYPE /C1
75 ;
76 ;
77 ; THE FOLLOWING WILL INITIALIZE PARAMETERS REQUIRED IN
78 ; THE REST OF THIS PROGRAM.
79 ;
80 x.oFF' 0
81 Y.off 0

z.ofF = 0
23 xc = 0
84 Yc = 0
85 :c = 0
86 ;
87 CALL u.talte.Picture; TAKE A PICTURE
88 CALL u.recosnize; IDENTIFY OBJECTS
89 x = s.proto.id
90 CALL u.where.are.you.protc; ANALIZES IMAGE AND PROVIDES
91 ; ITS x & Y CENTROID POSITIONS
92 xcent = s.k.scale*s.xcenter.blob1x]
S3 -.cent = s.f.scale*s.vcenter.blob[x]
94 SET center = camera.TRANS(xcent, vcent, 0, 0, -90, 0)
95 camera IS THE THE RELATIVE TRANSFROMATION
9G DETERMINED WHEN u.frame.teach WAS EXECUTED.
97 SPEED 100
Se MOVE center
99

100 TYPE
101 TYPE "I "
102 TYPE "I LOOK AT THE POSITION OF THE ROBOT I"
103 TYPE "I POINTER TO THAT OF THE CALIBRATION I"
104 TYPE "I DISK. IF IT IS NOT IN THE CENTER I"
105 TYPE "I ANSWER THE FOLLOWING QUESTIONS I"

106 TYPE ".I I

107 TYPE ::--------------:------ :-------------- ::-- , /0, /C1
108
109 TYPE "THE POINTER IS OFF CENTER BY + or ------ m's"
11 PROMPT " IN THE 'X' DIRECTION -- x.F
111 TYPE /C1
112 TYPE "THE POINTER IS OFF CENTER BY + or - -------- mm's"
113 PROMPT " IN THE 'Y' DIRECTION -- >", v.oFF
114 TYPE /C1
115 TYPE "THE POINTER IS TOO FAR ABOVE/BELOW THE TABLE BY "
116 PROMPT " + or ------ m's -- >", z.oFF
117 TYPE /C1
118 ;11 CALL camera.center.oPFset; THIS WILL CORRECT THE OFFSET

120 SET spot = cameral:TRANS(xcent, vcent, 0, 0, -90, 0)
121 SPEED 25
122 MOVE sPOt
123 ;
124
125 ; 129
12G ;
177

12e
129

130 TYPE /B
131 TYPE "==> CHECK THE POINTER W.R.T. THE DISK AGAIN <am"132 TYPE /C1
133 TYPE "THE POINTER IS OFF CENTER BY + or ----- m's
134 PROMPT " IN THE 'X' DIRECTION -- >", xc
135 TYPE /Cl
136 TYPE "THE POINTER IS OFF CENTER BY + or - ---- mm's"
137 PROMPT " IN THE 'Y' DIRECTION -- >"r Yc
138 TYPE /C1
139 TYPE "THE POINTER IS TOO FAR ABOVE/BELOW THE TABLE BY"
140 PROMPT " + or-------- ram's -- >", zc
141 TYPE /C1
142
143 CALL camera.center.oFfset
144 SET spot = cameral'TRANS(xcent, ycent, 0, 0, -90, 0)
145 SPEED 25
14G MOVE spot
147
148 TYPE "THIS SHOULD BE CLOSE ENOUGH, THE SYSTEM IS NOW"
149 TYPE " READY FOR YOUR CON'.lIENCE! ! ! ! ! !!!!"
150 TYPE /C1
151
152 PROMPT "=.=.==> PRESS <RETURN> TO CONTINUE <
153
154 READY
155
15G CALL vision.,nenu; GO BACK TO MAIN MENU

.END

130

.PROGRAM Prototype.train

2 . THIS PROGRAM CALLS u.train.blob TO TEACH THE VISION

3 ; SYSTEM THE VARIOUS PROTOTYPES THE USER IS INTERESTED
4 ; IN RECOGNIZING.
5;
G : FOR THE VISION DEMO OPTION, PROTOTYPES 1 AND 2 SHOULD BE
7 ; TRAINED AS A CIRCLE AND A RECTANGLE, RESPECTIVELY. THE REASON
8 ; FOR THIS CONSTRAINT LIES IN THE FACT THAT THE VISION
9 ; DEMO HAS PROGRAMS WHICH ARE BASED ON THE PROTOTYPES BEING

10 ; DEFINED WITH; I -- CIRCLE, 2 -- RECTANGLE.

11
12 TYPE /C11
13 TYPE " -==> NOTE <==

14 TYPE /By, /C
15 TYPE " IF THE USER IS TRAINING OBJECTS FOR THE VISION DEMO"

IG TYPE /Cl
17 TYPE "==> PROTOTYPE 1 SHOULD BE A CIRCLE '.=-", /Ci

18 TYPE "==" PROTOTYPE 2 SHOULD BE A RECTANGLE <==", /C3

19
20) PROr;PT > PRESS <RETURN> TO CONTINUE <=......

21 CALL u.train.blob
22 CALL uisior,.menu; G0 BACK TO MAIN MENU

.END

131

.p1 blob.store.or.delete
•PROGRAM blob.store.or.delete

1;
2 THIS PROGRAM IS USED WHEN STORING OR DELETING PROTOTYPE
3 ; INFORMATION INTO/FROM THE VISION SYSTEM'S MEMORY.
4;
5 ; u.sauer IS A MENU DRIVEN SYSTEM PROGRAM WHICH IS CALLED
6 G WHEN THE USER WISHES TO COMPLETELY DELETE A PROTOTYPE FROM
7 THE VISION SYSTEM, OR TO COPY THEM FROM THE VISION SYSTEM
8 ; TO VAL II AND VIS VERSA. u.sauer DEALS ONLY WITH PROTOTYPE
9 ; INFORMATION, NOT ORIENTATION FEATURES, OR OTHER SWITCHES.

10
11 ; u.delete.blob WOULD BE USED IF THE USER WISHED TO
12 ; DELETE ONLY A PROTOTYPE'S FEATURES FROM MEMORY.
13 ;
14 ; u.boot REBOOTS THE VISION SYSTEM. THIS HAS THE EFFECT OF
15 ; DELETING ALL THE PROTOTYPES FROM MEMORY.
i1;
17
18 15 TYPE /B, /Cll
19 TYPE "THE FOLLOWING OPTIONS ARE AVAILABLE", /CI
20 TYPE " 1. STORE, RECALL, OR DELETE A PROTOTYPE ", /C1
21 TYPE " 2. DELETE ONLY A PROTOTYPE'S FEATURES ", /C1
22 TYPE " 3. DELETE ALL PROTOTYPES FROM MEMORY ", /C1
23 TYPE " 4. GO BACK TO THE VISION LAB MAIN MENU", /C1
24 TYPE "PLEASE ENTER THE NUMBER OF THE OPTION
25 PROMPT " YOU DESIRE -- > " flum
26

27 CASE INT(num) OF
28 VALUE I:
29 CALL u.saver; STORE, COPY, OR DELETE A PROTOTYPE
30 VALUE 2:
31 TYPE /B
32 TYPE "ENTER THE NUMBER OF THE PROTOTYPE WHOSE FEATURES
33 PROMPT YOU WISH TO DELETE -- > ", u.delete.blob.num
34 TYPE /C1
35 CALL u.delete.blob; DELETE A BLOB'S FEATURES
36 VALUE 3:
37 CALL u.boot; DELETE ALL PROTOTYPES FROM MEMORY
38 VALUE 4:
39 CALL vision.menu; GO BACK TO MAIN MENU
40 ANY
41 TYPE "THAT NUMBER IS NOT AN OPTION, PLEASE TRY AGAIN"
42 GOTO 15
43 END
44 ;
45 CALL vision.menu; GO BACK TO MAIN MENU

.END

132

.p1 vision-demo.menu
-PROGRAM vision demo.menu

I • 1;
2 ; THIS PROGRAM PROVIDES A MENU FOR SELECTING VARIOUS CHOICES
3 OF VISION DEMOS. EACH TIME THE MENU PROGRAM IS EXECUTED,
4 ; THE VISION/ROBOT INTERFACE IS INITIALIZED BY CALLING A
5 ; SYSTEM PROGRAM, u.initvision, (LOCATED ON THE UNIVISION1.PG
6 ; FLOPPY DISK).
7;
B CALL u.Initvision; INITIALIZE THE VISION/ROBOT INTERFACE
9 u.new.Picture = i; SYSTEM LOOKS AT CURRENT PICTURE

10 u.numblob.id = -1; VISION SYSTEM WILL IDENTIFY ALL OBJECTS IN FOV
11 u.numblob = 1; BLOB 1 WILL BE COMPARED TO ALL
12 ; KNOWN PROTOTYPES
13 u.blobnum = 2; set this number to the max number of
14 ; of blobs exPectea in the camera's FOV.
15 u.picture.Past = O; set slow moce
16 ;
17 10 TYPE /6, /C3; BEEPS THE SCREEN AND SKIPS 3 LINES
18
19 TYPE "*****~*************~**

20 TYPE "**

21 TYPE " WELCOME TO AFIT'S VISION DEMO *"
22 TYPE '4* *1
23 TYPE "*
24
25 SPEED 75; robot speed is set to 75% of its normal value
26 READY
27 TYPE /C1, /B
26 TYPE THE FOLLOWING DEMOS ARE AVAILABLE "

29 TYPE /C1
30 TYPE i. OBJECT IDENTIFICATION ", /C1
31 TYPE " 2. OBJECT IDENTIFICATION AND ROBOT POSITIONING ", /C1
32 TYPE " 3. DIRECT ROBOT POSITIONING ", /C1
33 TYPE " 4. GO BACK TO THE VISION LAB MAIN MENU", /C1
34
35 TYPE "PLEASE ENTER THE NUMBER OF THE DEMO
36 PROMPT YOU WISH TO VIEW --- > , num
37 ;
38 CASE INT(num) OF
39 VALUE 1:
40 CALL ident.blobs; PROGRAM TO IDENTIFY BLOBS
41 VALUE 2_:
42 CALL ident.blob.point.center; PROGRAM TO IDENTIFY BLOBS,
43 ; & DIRECTS THE ROBOT TO MOVE TO THE CENTER OF THE
44 ; LARGEST SLOB IN THE CAMERA'S FIELD OF VIEW (FOV)
45 VALUE 3:
46 CALL Point.center; DIRECTS THE ROBOT TO MOVE TO THE CENTER
47 ; TO THE LARGEST BLOB IN THE CAMERA'S FOV.
48 VALUE 4:
49 CALL vision.menu; GO TO MAIN MENU
50 ANY
51 TYPE "THAT NUMBER IS NOT AN OPTION PLEASE TRY AGAIN"
52 GOTO 10
53 END
54 ;
55 ;
56 PROMPT = PRESS <RETURN> TO CONTINUE ... ="
57 GOTO 10

.END 133 133

r.l ident.blobs
.PROGRAM ident.blobs

2 ; THIS PROGRAM CALL A SYSTEM PROGRAM, u.taKe..picture,
3 ; WHICH ASKS THE VISION SYSTEM TO TAKE A PICTURE.
4 : THIS PROGRAM PROVIDES THE NUMBER OF BLOBS IN THE
5 ; CAMERA'S FOY.
6;
7 ; AFTER COMPLETION OF THIS PROGRAM, u.recosnize, IS
S CALLED TO IDENTIFY THE OBJECTS OBSERVED WHEN THE LAST
S 9 PICTURE WAS TAKEN.
107
11 CALL u.taKe.picture; ASK THE VISION SYSTEM TO TAKE A PICTURE
12 nb = s.blob.count
13 TYPE /8, /C1

S14 IF s.error THEN
15 TYPE "BAD ROUTINE - ERROR CODE IS -- >"/ /D, s.system.error
1G ELSE
17 TYPE "GOOD PICTURE - THERE ARE ", /D, nb

18 TYPE /B, "BLOB(S) IN THE CAMERA'S VIEW!"
19 END
20 CALL u.blinK.blob; OUTLINE THE BLOB IN WHITE

21 CALL u.recosnize; IDENTIFY THE OBJECTS
22 TYPE /B

23 TYPE /C1, *
24 x = s.proto.id; SET NUMBER OF THE LARGEST PROTOTYPE
25 7 IDENTIFIED.

26
27 ; IT SHOULD BE NOTED HERE THAT THE USER MUST PREVIOUSLY TRAIN

28 ; THESE OBJECTS, WITH THE APPROPRIATE NUMBER, TO THE VISION

29 ; SYSTEM. FOR EXAMPLE, OBJECT "1" IS TRAINED TO BE A CIRCLE

30 ; AND OBJECT 2 IS TRAINED TO BE A RECTANGLE.

31 ; ALSO IF AN OBJECT IS NOT RECOGNIZED BY THE SYSTEM

32 ; s.PIroto.id = 0
33 ;
34 CASE INT(x) OF
35 VALUE 0:

36 TYPE "* I DON'T RECOGNIZE ANY OBJECTS *"

37 VALUE 1:
38 TYPE "* THE LARGEST OBJECT IS A CIRCLE *"

39 VALUE 2:
40 TYPE "* THE LARGEST OBJECT IS A RECTANGLE *"

41 END
42 TYPE *
43 TYPE /CI
44 CALL locate; ASK THE VISION SYSTEM TO GIVE THE

45 ; CENTROID POSITION OF THE OBJECT.
46 RETURN

.END

134

.Pl locate
-PROGRAM locate

1 ;
r 2 ; THIS PROGRAM CALLS u.where.are.you.proto TO DETERMINE

3 AN OBJECTS CENTROID AND ORIENTATION.
4;
5 ; THE x & y COORDINATES ARE SCALED BY THE SCALE FACTOR, s.k.scale,
6 ; WHICH DEFINES THE RATIO OF THE DISTANCE BETWEEN 2 LOCATIONS
7 ; IN ROBOT COORDINATES TO THE DISTANCE IN PIXEL COORDINATES.
e;
9 CALL u.where.are.vou.proto

10 xcent r s.K.scale*s.xcenter.blobtx]
11 Ycent = s.K.scale*s.ycenter.blob[x]
12 orien = 180*s.oriert.b1obEx]/PI
13 TYPE "THE X COORDINATE OF THE CENTROID (in mms) IS", /D, xcent
14 TYPE /C1
15 TYPE "THE Y COORDINATE OF THE CENNTRO!D (in mms) IS", /D, Ycert
16 TYPE /C1
17 TYPE "THE ORIENTATION IS", /D, orien
18 TYPE /C2
19 RETURN

.END

135

•Pl ident.blob.point.center
.PROGRAM ident.blob.Point.center

1 ;
2 ; THIS PROGRAMS CALLS VARIOUS PROGRAMS TO ENABLE THE
3 ; VISION SYSTEM TO IDENTIFY AN OBJECT AND PROVIDE
4 ; THE APPROPRIATE COMMANDS AND COORDINATES FOR THE ROBOT
5 ; TO POINT TO THE CENTROID OF THE OBJECT.
6;
7 MOVE #s.saFe.position; MOVE THE ARM TO A POSITION
1 ; OUTSIDE THE CAMERA'A FOV.
S TYPE /B, /C2

10 CALL ident.blobs; VISION SYSTEM TAKES A PICTURE
11 ; IDENTIFIES BLOBS AND PROVIDES THE
12 ; OBJECTS X AND Y CENTROID POSITION.
13 CALL camera.center.oFfset; THIS PROGRAM PROVIDES THE
14 ; CORRECTION FOR THE OFFSET
15 ; BETWEEN THE OBJECT'S CENTROID
1s ; AND THE POSITION OF THE POINTER
17 ;
IS ; THE NEXT EXPRESSION DEFINES THE LOCATION OF THE OBJECT
IS ; IN THE ROBOT REFERENCE FRAME.
20 SET spot = cameral:TRANS(xcent, Ycent, O, orien, -90, 0)
21 SPEED 75
22 MO'E spot; MOVE ARM TO THE DESIRED LOCATION

23 RETURN
.END

136

.* l camera.ceriter.oFFset

.PROGRAM camera.center.offset

2 ; THIS PROGRAM SIMPLY PROVIDES THE CORRECTION FOR THE OFFSET
3 ; BETWEEN THE OBJECT'S CENTROID AND THE POSITION OF THE ROBOT

4 ; POINTER.
5 ;

G SET cameral SHIFT(camera EY x.oFf)+c, ,.off+yc, z.otf+zc)

7 RETURN

.END

137

.-P Point.center
-PROGRAM point.center

1 ;

Z ; THIS PROGRAM IS BUILT FOR SPEED. IT SIMPLY
2 ; INSTRUCTS THE VISION SYSTEM TO TAKE A PICTURE, BY
4 ; CALLING u.ta~e.picture. THE PROGRAM THEN IDENTIFIES
5 ; THE OBJECTS USING u.recosnize. AND FINALLY, THE
S ; OBJECT'S CENTROID IS DETERMINED BY u.where.are.vou.proto.
7 ;
8 10 MOVE #s.saFe.position; MOVES ARM TO A POSITION
T OUTSTDE THE CAMERA'S FOY.

I¢ CAL u.taKe.Picture; VISION SYSTEM TAKES PICTURE
11 IF S.blob.cooFt .> u THEN; CHECK FOR BLOBS IN FOY
!2 CAL_ý u.recosv,':ize; IDENTIFY BLOBS
13 x = s.proto.id
14 CALL u.where.are.vov.Proto; PROVIDES OBJECT'S CENTROID
15 Acer:t = s.K.scale*s.xcerter.blobEx]
IIS TYPE /Ci
17 TYPE "THE >, COORDINATE OF THE CENTROID (in ri ms) IS", /)K, xcer. t
!c ý,cet = s.K.scale*s.',center.tDlo 1[x]
!I, TYPE "THE COORDINATE OF THE CENTROID (in amis) 7S", /D, vcent

orien 1B*s.criert.blob[x]/PI
21•' TYPE "ORIENTATION IN DEGREES IS", /D, orien
22 'PE /C2

CALL camera.center.cF~set
<4 SE- spot = carvera :TRANS(xcent, ýcent, 0, orix!,, -9C), C)
2 5
25 test = INRANEEspct)
27 IF test C) THEN
26 "E /,, ,C, " === WARNING <:===, /C!
29 TYPE "THE OEJECT IS OUT OF THE ROBOT'S REACH"
31' -,'PE " PLEASE MOVE THE OBJECT AND TRY AGAIN , /Ci
31 PRC!PT ".==7==: PRESS -RETURN:. TO CONTINUE
32 COCO 10
3 2 ;7SE
24 SPEED 10'1
35 MO.E spot
3tB END

3£ TYPE /e, / C 2
39 TYPE /e, "THERE ARE NO BLOBS IN THE CAMERA'S VIEW"
4 0 TYPE /C2
41 T"PE "PLEASE PLACE AN OBJECT ON THE TAR E
42 *TYPE "AND RERUN THE PROGRAM", /C2

43 END
44 RETURN

END

138

.P1 tracK.tars
-PROGRAM tracK.tars

I ;

2 , This Prosram exhibits the charateristics of a Static looK-and-
3 ; move visual servo system durins vision-robot system (YRS>) motion.

5 ; Before executins this Prosrarti, ensure that there aren't an:?
6 ; Prototypes Jr, the vision system's memoryi . IF there are, type
- ; EX U.BOOT, before executins this prosram. This is necessary
8 sirce this Prosram will tracf" any tarset Placed in the camera's
£j ; F OY.

ii ; The ProsrafT! instructs the vision s-stem to take a Picture and
1 Prot,:doe the x ary v oFFsets of the centro,.d of any tarset
13 ; in te camera's FOY.
14 ;
15 ; Next a Prosrati entitled, center, is called. Center
16 ; P cr,.:, es the neccessary vis.on inFormat , on to Provide the x and y
17 ce'-;t-:.id Pcstlor s For correction to the robot's Position.

ie

7-1.e DO ioo- w.ill repeat itself until the tarset is centered in, the
ca.ie ra ' s ., a .-I t he a rTi has stoF-Pedd

23
-4 5 S E D I'"

"M= Z,.,,E t' t a -t .P.o S-it. or

S -7 C A L; Lt . l'. n I t 1. I s I -_ 'n , lin It I a! ze C Offlffl LtT=l I cat I crlI .

2n v.rumbboT = o ; 2obi b w,1i1 De compared to all Prototypes.

30- ;) C ecýý. to i1are sure the nall Is in. the camera's FOQ.

32 10 CALL u.taKe.Picture
33 2- s.tI o.cov ornt I THEN
34 -,,PE /P, /CI
3- TYPE

2• ','PE "'**

37 TYPE E* THE BALi_ IN NOT IN THE CAMERA'S *"
38 TYPE "Z FIELD OF YIE¼ (FOY)
3S TYPE "C *

4 0 TYPE "**

41 TYPE ,/9, /1
42 T'E " . .PPLEASE OSIT ON THE BAiL IN THE CAMERA'S FOY"

43 TYPE /B, /C1
44 PROMPT " PRESS -:'RETURN` TO CONTINUE .-
45 COTO 10
46 E LSE
47 HERE current7 define current as Present location.
48 20 D 0
49 TIMER i : 0
51'; u. new. Picture 1
51 u.Fast = 0
52 CALL u.where.are.you.proto, take Picture and set
53 , x, y centroids
54 TYPE "The time to set the vision info was", TIMER(l), se
55 CALL center; This Prosram instructs the
56 ; robot to center the camera
57 ; over the tarset.
58 UNTIL ball == 0
59 GOTO 20
60 END

.END 139

• 1 center
.PROGRAM center

2 ; THIS PROGRAM. CHECKS TO SEE IF THE CENTROID OF THE
3 ; 2ALL IS IN THE CENTER OF THE CAMERA'S FOY.
4;
5 ball = 1
6 xcen = s.K.scale*s.xcenter.blob1]
7 ycen = -s.k.scale*s.ycenter.olob[]
8 TYPE X POS IS -1'6 , xcen
9 TYPE • Y POS IS -, cen
10 TYPE /C1
11 IF ((ABS (xceri. 10) AND (AB, S(cen) 10)) THEN
.2 ball = C,
i3 ELSE

4 FDR I = 1 TO i0'
15 SET current SHIFT(current BY xcen/10, vcen/15)

,MOCE current
!7 END
is END

S9 R Er U RN
END

140

* Pl tracK.tars.scat
-PROGRAM tracK.tars.scat

1 ;
2 This prosram exhibits the charateristics of a Static looK-and-

3 move visual servo system durins vision-robot system (VRS>) motion.
4 ;

5 ; The Prosram instructs the vision system to take a Picture ad,

6 Provide the x any Y offsets of the centroid of any recosnized balls
7 ; in the camera's FOY.
2 ;

S ; Once the oall has been identified by the system Prosram, u.recosnize,
10 ; a Prosram entitled, center.scat, is called. Center.scat
11 ; Provides the neccessary vision information to Provide the x and V
12 ; centroid Positions for correction to the robot's Position.
13 •
14 ; z Position is determined by the size of the ball recosnized. The

15 ; larser the ball, the closer the robot is to its desired objective.

17 ; The DO loop will repeat itself until the ball is centered in the

18 ; camera's FOY, and the arm has stopped at a predetermined heisht

19 ; abcve the ball.
,0
21 See the prosmra', search.tracK, For additional comments

2 ; Pertainins to the sener3l use of this Prosram.
23
24 5 SPEED 100
25 MOVE #start.Fpsltion
2G BREAK
27 CALL u.initvisian; init:alize communication.
22 u.numblob = 1 Blob 1 will be compared to all prototypes.

2 El
30 , CrecK to make sure the ball is in the camera's FOY.
31

32 10 CALL u.taKe.Picture
33 IF s.blob.count < 1 THEN
34 TYPE /B, /C1
35 TYPE **** ~*~*****~*********
3G TYPE "*

37 TYPE "* THE BALL IN NOT IN THE CAMERA'S *"

38 TYPE '* FIELD OF YIEW (FOV)

39 TYPE "*

40 TYPE
41 TYPE /6, /C1
42 TYPE " ==r=> PLEASE POSITION THE BALL IN THE CAMERA'S FOVY

43 TYPE /2, /C1
44 PROMPT PRESS <RETURN> TO, CONTINUE <==

45 GOTO 10

46 ELSE
47 HERE current; define currernt as Present location.

48 TIMER 2 0
4S DO
50 TIMER 1 0

51 BREAK
52 u.new.picture 1
53 u.fast = 0
54 CALL u.where.are.you.proto; take picture and set

55 ; Y, v centroids
56 CALL u.recosnize; Identifv the ball.

57 id = s.proto.id; which ball was identified.

56 ;141
59;
(RO)

bl
62
63
64
G5 TYPE /B, "**
66 TYPE "The ball recoanized is Prototype #", id
G7 TYPE "The time to set the vision info wa-", TIMER(I), "S

GB CALL center.scat; This Proaram instructs the
69 ; robot to move closer and
70 ; centered on the ball.
71 UNTIL ball == 0
72 TYPE TlMER(2)
73 END
74 PROMPT "====:=> PRESS <.RETURN> TO RUN THE PROGRAM AGAIN < ...
75 GOTO 5
7G RETURN

.END

142

-Pl center.scat
-PROGRAM center.scat

1 ;
2 ; This Prosram checks to see if the centroid of the ball is in
3 the center of the camera's FOV. Also, dependins to which
4 Prototype was identified, the camera will move down in the
5 '-:' direction an appropriate, Predetermined, amount.
6;
7 ; The x and Y locations (s.xcenter.blob[] and s.vcenter.blob[])
8 ; Provided by u.where.are.you.proto are scaled by the scale
S factor, s.-.scale. s.k.scale is determined when the Prosram u.

i0 ; u.K.teach is executed. See the Prosram, search.center, for a
11 ; Further explaination of s.K.scale.
121
13 ; xcen and vcen are the resultant values when the x and v locations
14 ; are scaled. It should be noted that Ycen is the nesative value
15 ; of s.ycenter.blob[]. This occurs since the robot's x,y frame is
16 different than the camera's x,' frame.
17 ; It should also be noted that, vcen, when scaled by s.K.scale
18 ; does not provide accurate results. Throush experimentation it
19 ; was Found that "f Yce- is multiplied bv 2/3's, sood results occur.2' 0 ,
21 The ball will be considere:d 'centered' if the centroid is within
22 or -'10 mm. Once the object is identified as a Prototype
23 sreate-'. than #G. the robot will not move any closer to the ball.
24
25 ; The FOR loop in this prosram breaks up the desired robot motion
26 ; into only 10 steps. This allows smooth movement with minimal
27 ; cvershoct oF the tarset. As cart be seen in the loop, aependins
29 ; on which ball is identified, the arm will move down a desisnated
29 ; amount. Since the Prototypes were trained at 25 mm increments
30 ; the value of downward movements should be Factors of 25.
31 ;
32 SPEED 50 ALWAYS
33 bal. = I
34 xcen = s.K.scale*s.xcenter.blob[id]
35 vcen =-s.,.scale*s.ycenter.blobjid]
3C TYPE ,v POS IS ->", xcen
37 TYPE "Y POS IS ->", vcen
38 TYPE '**, /CI
139 1
40 ; Chec.,• tc see if the ball is centerec and close enoush to the ball.
4: ,
42 IF ((ARS(xcen) 10) AND (ABS(Ycen) < 10) AND ((id < 1) OR (id >=
43 ball = 0
44 ELSE
45 FOR x = I TO 10
46 CASE INT(id) OF
47 VALUE 0, 9:
48 zoom = 0
49 VALUE 1, 2, 3:
50 zoom = -150
51 VALUE 4"
52 zoom = -75
53 VALUE 5, 7:
54 zoom = -50
55 VALUE a, 8:
56 zoom = -25
57 END
58
59 ; 143
60

62 ;
63 ;
64 ;
65 ; The next IF statement accounts for the initial offset between the

66 ; Position of the camera mount with respect to the PUMA end effector.
$7 ; See search.center For an explanation.
G8 ;
Be IF ((id <> 0) AND (id < 4)) THEN

70 SET current = SHIFT(current BY xcen/10, yoen/15+3.5,
7'. ELSE

72 SET current = SHIFT(current BY xcen/lOv, Yen/15, zoom/
73 END
74 END
75 MOVE current
76 END
77 RETURN

.END

144

•Pl Search
-PROGRAM search

I ; This Prosram will so throush a "square conical" search
2 ; (soins from the largest Possible area, to the smallest)
3 ; in an attempt to acquire a tarset (ball) in the search area.

5 : Once the ball has been acquired by the vision sYstem,
G ; a Prosram entitled, search.tracK, is called. This
7 Program will instruct the robot to center the ball in the
£ ; camera's FOY and lower the camera closer to the ball.

10 1 Pf the ball is not acquired durins the first search, the
11 ; search will be accomplished over and over, until a ball is
12 ; Placed in the search area, or the user terminates the Prosram.
13 ;
14 ; Once the ball has been aqcuired, the system will so into a
15 ; continuous "tracK ins" mode. In this mode, the user can move
1G the ball arnywhere in the camera's FOV, and the robot/vision
17 ; system will tracK the ball (the roOct will not move closer to
18 I the ball, Just track it).

201 If the ball is removed completely from the camera's FOV, the
21 searc. will start over from the besinnins. The search's
22 ; start,:s Point, #search.start, is defined as a VAL II Precision
23 (re;er to a YAL 1I User's Guide for a definition oF Precision Point).
24
25 TTMERZ 1 = 0
26 so SPEED 100
27 MOVE #search.sta-t; Th:s is the Predifined startins Point

ccunt = 0; Initialize counter used to instruct the
30 ; Prosram to accomplish trackins only.
31 w = 0; Initialize counter for square conical search.
32 BREAK; Next command waits until robot motion stops.
33 SPEED 50 ALWAYS
34 • m m'!
35 CALL u.initvision; Initialize vision/rcbot communication
36 u.numb!cb = 1; Slob 1 will be compared to all Prototypes.
37
38 HERE start
39 CALL u.taKe.picture; System Prosram which checks for blobs.
40 ;
41 ; The followins IF-THEN-ELSE is used to conduct the square search
42 ; and aqcuisition of the ball.
43 ;
44 ;,The search will continue until, u.taKe.picture, finds a blob
45 ; with an area sreater than the minimum blob Pixels (set by user)
46 ; in the camera's FOY.
47 ;
48 IF s.blob.count < I THEN
49 CASE INT(m) OF
50 VALUE 1, 2, 3, 12, 13:
51 MOVE SHIFT(start BY S0)
52 VALUE 4, 5, 6, 14:
93 MOVE SHIFT(start BY , 65)

4 VALUE 7, 8, S, 15:
55 MOVE SHIFT(start BY -80)
56 VALUE 10, 11, 16:
57 MOVE SHIFT(start BY , -65)
58
5; 145

so

62
S3
S4
65 ANY
SG TYPE /B
67 TYPE "SEARCH HAS BEEN COMPLETED, THE BALL WAS"

TYPE "NOT IN THE SEARCH AREA.", /CI

9 TYPE "THE SEARCH WILL NOW REPEAT ITSELF.", /B
70 ;
71 TYPE "PLEASE PLACE THE BALL IN THE SEARCH AREA,"'

72 TYPE "OR TERMINATE THE PROGRAM BY TYPING,", /C1

73 TYPE " 'A' FOLLOWING BY PRESSING THE <RETURN? KEY", /C1
74 ;

75 DELAY 2; Delay Prosram execution by 2 seconds.

76 GOTO 50
77 END
78 BREAK
7S ELSE
so ;
81 ; The Followins DO loop will continue forever, unless the user

82 ; wishes to terminate. Th terminate Prosram execution: press

63 ; "A" Followed by <RETURN>.
84 ;
85 ; if the ball is removed from the camera's FOY. The search will

86 ; start over.
87
88 DO
69 CAL -search.tracR

9o ZF lost <> 0 THEN

9i TYPE /B, "THE BALL HAS BEEN ACGUIRED", /CM

92 TYPE /B, "TO STOP THIS PROGRAM:"', /C

93 TYPE " TYPE 'A' FOLLOWED BY PRESSING THE

14 TYPE " <RETURN> KEY.", /C1

-05 END

96 Ti st rvn
97 count = 15; Reset counter. This is to prevent

88 ; the robot from movins closer to the

99; ball. However tracRins can still be

I00 , accomplished.

101 CALL u.tame.Piuture; ChecK to see if ball is

102 ; is still in the camera's FOV.

i03 UNTIL s.blo:.count == 0

104
105 TYPE IC,"

106 TYPE "*

107 TYPE "* THE BALL HAS BEEN REMOVED FROM

108 TYPE "* THE CAMERA'S FOV, THE SEARCH WILL Of

iOS TYPE "* REPEAT UNTIL THE BALL IS REACGUIRED

110 TYPE "*

11 TYPE " */C2

112
113 GOTO 50
114 END
115 GOTO 5

.END

146

.Pl search.trach
-PROGRAM search.tracR

1 ;

, 2 ; This Proaram instructs the vision system to take a Picture
3 ; and sive the x and Y offsets of the centroid of any recoanized
4 ; balls in the camera's FOV.
5 ;
6 ; Once the ball has been identified by the system Prosram,
7 ; u.recosnize, a Prosram entitled, search.center, is called.
8 ; Search.center Provides the necessary vision information
9 ; to Provide the x and Y centroid Positions for correction to

10 ; the robot's Position.
11 ;
12 ; z Position is determined by the size of the ball recosnized.
13 ; The larser the ball, the closer the robot is to its desired
14 ; objective.
15 ;
16 ; The DO loor will repeat itself until the ball is centered in
17 ; the camera's FOY, and the arm has "stoPPed at a Predeterminea
18 ; heisht above the ball.
19 ;
20 ; NOTE: The reason the robot is not lowered all the way to t-he
21 ; ball is tat if the ball encompasses a maJoritY of the camera's
22 ,OY, the certrcid Position can not be calculated accurately, and
23 ; te oc*!/vision system will overshoot bach and forth For an
24 ; extenroed period of' time.
25 ;
2G ; NOTE: The diFFerent ball sizes are trained to the visicn s'stem
27 ; ahead of time. Usins a ball alleviates the Problem of not havins an
'8 ; autofocus camera lens. Even thoush the ball sets blurry as the
29 ; camera sets closer, it will still remain circular in the camera's
30 ; 2-dimersional FOY. u.train.ýlob was used to train the vision system.
31 ; Tralnins occurs as follows:
32 ; 1) The user deFines a startins Pcsition (the one used here is
33 ; cesisnated as the Followins Presion Point, #start.Position).
34 2) u.train.biob is called, the First object trained will be
35 ; desisnated as Prototype '1'.
36 ; 3) Once trainins has been accomplished, the user should verify
37 ; the trainins was succesful. This is accomplished by usins
38 ; the lisht Pen to select the o PROTOTYPE MENU, and then
39 ; checKins the o DISPLAY DISCRIMATION MATRIX. There should be
40 ; a larse block next to the CURRENT SET row. IF not, the ball
41 ; should be retrained.
42 ; To matte life easier, the balls have been already trained at 25 mm
43 ; intervals and stored on tape. The tape is entitled 'VISION SERVO
44 ;.CONTROL TARGETS'. These can be loaded directly, without any additional
45 ;trainins.

46
47 ; Tne timer is used to delay Prosram execution of the Proaram
48 ; and display the amount of time required For the vision system
48 ; to Process the imase and send the required data back to the
50 ; robot Processor.
51
52 ; Since this Particular Prosram is worKinh as a Static looK-and-
53 ; move system, the delay is required to ensure the robot has
,4 ; stopped movins before the next Picture is taken. The reason For
55 ; this is; if the vision system takes a Picture in-between trained
56 ; ball sizes, the Picture taken will not be an identifiable object.
57 ; (The area of the ball will not match any area trained earlier)
58 ; Thus the vision system will not Know how Par down to move the arm.
59 ; 147
60

62
63

64
65 SPEED 25
6E HERE current; Define current as Present location.

9 S ; The Followins 2 Parameters initialized are used incase the vision
S system sets lost, ie. it thinks it has the ball in its FOY, but

70 in reality it doesn't.
71
72 xcen - 0
73 xcenl - I
74
75 DO
76 CALL u.initvision; Initialize communication.
77 TIMER I = 0
78 BREAK
79 u.new.Picture 1
80 u.fast = 0
82. CALL u.where.are.you.Pro'to; take Picture and set
82 ; x, Y centroids
83 CALL u.recosnize: Identify the ball.
84 id : s.Proto.id; This comes form u.recosnize.
85 ; It identifies which ball was identified.
BG

87 TYPE /B,
68 TYPE "The ball recosnized is prototype #", id
89 TYPE "The time to set the vision info was", TIMER(1), /C1

91 CALL search.center; This Prosram instructs the robot

92 , to move closer and centered on the ball.

93 LN•TIL ball :: 0
TYPE "TIviE IS ". TIMER(II)

-5 RETURN
.END

148

•Pl search.center
.PROGRAM search.center

2 2 This Prosram checs to see if the centroid of the ball
3 ; is in the center of the camera's FOV. Also, dependirng on

L 4 ; which Prototype was identified, the camera will move down
5 in the '-z' direction an appropriate, Predetermined, amount.
6;
7 The x and y locations (s.xcenter.blob[J and s.vcenter.blob[t)
8 ; Provided by u.where.are.you.proto are scaled by the scale
9; factor, s.K.scale. s.K.scale is determined when the Program

It.) u.K.teach is executed. It is important to set an accurate scale
11 ; Factor, with the camera mounted to the robot. The Following
12 ; should be accomplished to ensure this:
13 ; 1) Put the arm in the starting Position (#start.Pcsition).
14 ; 2' Execu±te u.K.teach, make sure the disk will be in the camera's
15 ; FOY when the robot is moved out of the way.
16 ; The value of s.K.scale should be approximately .5.
17 ;
18 ; xcen ana Ycer' are the resultant values when the x and Y locations
19 ; are scaled. It should be noted that ycen is the nesative value
20 ; oF s.--canter.blobJ3. This occurs since the robot's xy frame is
21 ; di'Fere'-t thnra the camera's x,y frame.
2_ ; It should also be noted that, Ycen, when scaled by

23 ; s.'.s:ale does not Provide accurate results. Throush experimentation

24 ; it was Found that if "cen is multiplied by 2/3's, good results occur.
25 ;
-2 , The ball will be considered centered if the centroid is within '+ or

27 .0 mm•. Once the object is identified as a PrototyPe
2e tne robot will not move any closer to the ball.

C1

•..' ; The FOR loop "s used to break uP the robot motion into 10 steps.
31 ; This allows. smooth movement with minimal overshoot of the target.
32 ; As can be seen in the loop, dePernoins on which ball identified,
33 ; the arm will move down a desisnated amount. Since the Prototypes
34 ; te trained at 25 mm increments, the value of downward movements

,35 ; should be Factors of 25.
36
37 SPEED 50 ALWAYS
38 1ost 1 1
39 bali = I
40 xcen = s.K.scale*s.xcenter.blob~id]
41 Ycen = -s.K.scale*s.ycenter.blob[id]42 TYPE "The ball's centroid in the IX'" direction is", xcen
43 TYPE "The ball's centroid in the 'I' direction is", Ycen

44 TYPE -***, /CI
45 .
46 ; ChecK to see if the vision system is hung.
47 ;
48 IF xcen == xcenl THEN
49 TYPE /C1, "**"
5 0 TYPE "*
51 TYPE "* THE BALL HAS BEEN LOST
52 TYPE "* *"
53 TYPE ***, /C2
:;,4 lost C 0
5 ball = 0

5G ELSE
57
58 ; Check to see if the ball is centered and close enoush to the ball.
59
so ; 149

61 7

63
64
65;
66 IF ((ABS(xcen) < 10) AND (ABS(ycen) < 10) AND (id > 8)) THEN
G7 ball a 0
68

ELSE
0 count a count+÷

7: FOR i a 1 TO 10
7-2 CASE INT(id) OF
73 VALUE 0:
74
75 ; The Followins IF statement is to account for the situation when
76 ; the ball's initial Position in the search area is at a distance
77 : sreater than that trained to the vision s-',stem. The search area
78 ; is such that at no Point in search area will the ball be at a
79 ; distance sreater than 75 mm from an initial training Position.
80 ;
81 IF count <- 4 THEN
62 zoom = -25.
83 ELSE
84 zcon) = 0
85 END
86 VALUE 1, 2 3:
e7 zoom -150
88 VALUE 4:
88 zoom = -75
s0 VALUE 5, 7:C% zoom = -51)
92 VALUE 6, S:
93 zoom r -25
94 VALUE 9:

5 zoom = 0
JG END
97 ;
98 ; The Followins IF statement is used once the ball has been
99 ; aciuired and zoomed into. The vision/robot system will just

100 ; become a tractor. This is a safety measure, because in the
101 ; trackins mode, if only Part of the ball is in the camera's
102 ; FOY when a Picture is taken, the Prototype identified misht not
103 ; be what the actual Prototype is. For example, if the blob identified
104 was new Prototype #I, the robot would thinK that it should lower
105 ; itself 150 mm, thus puttins itself out of its Possible ranse of
106 ; motion.
107
108 IF count > 6 THEN
109 SET current = SHIFT(current BY xcen/LO, ycen/25)
110 IF ((ABS(xcen) < 10) AND (ABS(Ycen) < 10)) THEN
ill ball = 0
!12 END
113 GOTO 25
114 END
115
116 The next IF statement accounts for the initial offset between
117 ; the Position of the camera mount with respect to the PUMA
118 ; end effector. This is a Problem because xryz coordinates in
119 ; the VAL II controller are based on the location of Joint 6,
"ý 0 ; not Joint 3 (where the camera is Presently mounted).

1;
.L22;
123
124 ; • 150
125 ;
126
127 ;

126

130 IF ((id <> 0) AND (id < 3)) THEN
131 IF m == 2 THEN
132 SET current = SHIFT(current BY xoan/10+1, Ycen)
133 END
134 IF ((m -- 3) OR (m um 4)) THEN
15 SET current . SHIFT(current BY xcen/10+2, Ycen)
G .ELSE

137 SET current = SHIFT(current BY xcen/1O, Ycen/1)
138 END
139;
140 ;
141 ELSE
142 IF id r= 3 THEN
143 SET current = SHIFT(current BY xcen/10, vcen/1)
144 ELSE
145 SET current = SHIFT(current BY xcen/10, Ycen/1)
146 END
147 END
148 25 MOVE current
14S END
150 END
151 END
152 xcenl = xcen; This sets up the checK for the situation where
153 , the vision system had the ball, then lost it.
154 RETUi N

.END

151

Task 2: Dynamic Visual Servo Control Program Listings

152

SPI tracK.tars.dcat
.PROGRAM tracK.tars.dcat

I
"2 " This Proaram exhibits the charateristics of a Dynamic look-and-

3 ; move visual servo system when the arm moves in a downward direction.

4 ; The remainins movements are done in the more classical Static 1ooI-

5 ; and-move servoins method.

7 The Prosram instructs the vision system to tatIe a Picture and

8 ; provide the x any v offsets of t'ie centroid of any recosnized balls

9 ; in the camera's FOY.

i a
11 Once the ball has been identified by the system Prosram, u.recosnize,

12 aProsram, entitled, center.dcat, is called. Center dcat

13 Protides the neccessarv vision irFor.ation to Provide the x and v

14 centroid Positions for correction to the robot's psoition.
15:

16 z rcsition .s determined by the sire of the ball recosnized. The

17 3.srser tne ball, the closer the robot is to its cesired objective.

19 The DO !cop will repeat itself until the ball is centered in the

2 , camera s FO, an'i the arm has stopped at a Predeteriflinec heisht

z. , above the ball.
22;

23 ; See the Prosram, search.ball.tracK, for additional comments

24 Pertz'niriS to te seneral use oF tnis prosram.

G 5 SPEED 100
27 MOV,1E #otart.Position

.:S Cr•.L•- u.initvislonl; :nitialize comm,.ic.ation.

30 1.numblob 1 Bloc 1 will be compared to all Prototypes.

31
32 ; Cnec:, to man',e sure the ball is in the camera's FOY.

32
34 10 CAý_L u.tahe.picture

35 IF s.blon.corit "• THEN

36 TYPE /B, /CI

37 TYPE
38 TYPE "*

39 TYPE " THE BALL IN NOT IN THE CAMERA'S *"

40 TYPE "* FIELD OF VIEW (FOV) "

41 TYPE "* ,,

42 TYPE

43 TYPE /8, /C1
44. TYPE ==== PLEASE POSITION THE BALL IN THE CAMERA'S FOV"

45 TYPE /I, /Cl

4G PROMPT " PRESS <RETURN> TO CONTINUE <=====

47 GOTO 10

48 ELSE
49 HERE current; define current as present location.

50 TIMER 2 = 0

51 DO
52 TIMER I = 0

853 u.new.Picture = 1

j4 u.fast 0

55 CALL u.where.are.you.proto; take picture and set

56
x, Y centroids

57 CALL u.recosnize; Identify the ball.

58 id = s.proto.id; which ball was identified.
59 153
so

62

63
64
65
66
67 TYPE /B, "**-
'13 TYPE "The ball recosni.ed is Prototype V", id
.9 TYPE "The time to set the vision info was", TIMER(I), " sel

70 CALL center.dcat; This Prosram instructs the
71 ; robot to move closer" and
72 ; centered on the ball.
73 UNTIL ball =v 0
74 TYPE TIMER(2)
75 END
76 PROMPT "=...> PRESS <RETURN), TO RUN THE PROGRAM AGAIN <u===:"
77 GOTO 5
78 RETURN

.END

154

.r'l center.dcat
•PvdtOGRA!0 cen ter.ocat

S; ~This; Prcmram checkis to t•ee I h2 ; hisPr~g~~ hec toseeIF' the centroid of' the ball is It,%3 the center of the camera's FOV. Also, dePendrins to which
4 Prototype was identzi~ ed, the camera will mot,,e down ire the

5 -z' direction an appropriate, Predetermined, amount.

7 , The x and1 y locations (s.xcenter.blob[) and s.ycerter.blobtj,
8 Provided by u.where.are.;ou. proto are scaled by the scale

; Factor, s.k.scale. s.t,.scale is determrted when the Program u.
10 ; u.K.teach is executed. See the Prosram, search.center, For a
I1 Further explairiation of s.K.scale.

13 ; xte- ant Ycen are the resultant values when the x and Y locations
14 ; are scaled. It should be noted that Ycen is tie nesative value
15 oF s.vcenter.blobEJ. This occurs since the roDot's x,-, Frame is
IG diFFerent than the camera's x.v Frame.
17 ; It should alsc be noted that, /cen, when scaled oby s.K.scale
18 ; does riot Provide accurate results. Throu-h experimertation it
IS ; was fou.,n that if' vcen is multiPlied by 2/3-s, sood results occur.
20
2;1 The bal wil be considered 'centered' if the centroid it within-- , or - , Once the object is identified as a prototyPe

sreater than, #8. the robct wilI, not move any closer to the ball.
24
5 ; Tr.e FOI- locr In t•is Program brea-,; UP the desired robot motion
2 ;6 into on, 2 steps. This i: what allows the dynamic loot-a1n,-move
27 oisual trac.'ins to cccur. As the arm is movins down, a Picture ise ; tavren as soon as possible in Prosram execution. The commands are
28 - serial, tut a form of parallel operation is Possible because o,'ce
30 : tre MOYE coi,.-,C is executed tne next commands a',e addressed.
31, Therefore 1 P'icture is requested while the arm is movirs Form its
32 ; last m0YE .ccrr1a'.'- See searchcenter For information Pertar:nins to
33 t te v- : ':es for dow'war, mo.eo• ,ernt.
34
35 SPEED 25 AL-WA,"S
3G ball 1
37 xcen = s.K.scale*s.xce ter.olobtid l
38 vcen % -s.f,,.scale*s.ycenter.blob[zd)
39 TYPE ', P0S IS -", xcen
40 T%'PE "Y POS IS ->", vcer.
41 TYPE "*** ' ** * ** * * ******* ", /C
42"

43 ; Cnecr to see if the ball is centered and close enoush to tie bal.
4445 Il ((ABS(cer,) < 10) AND (ABS(vcen) K 10) AND ((id < 1) OR (id N
4G ball 0
47 ELSE
48 FOR i I TO
49 CASE INT(id) OF
50 VALUE 0:
51 zoom = 0
52 VALUE 1, 2, 3:
53 zoom = -150
j4 VALUE 4, 5, S:
55 zoom : -50
56 VALUE 7, 8, 9:
57 zoom =0
58 END

GO

GZ
63

64
65
66 ; The next IF statement accounts for the initial offset between the
67 ; Position of the camera mount with respect to the PUMA end efPector.
3S ; See search.center for an explanation.

70 IF ((id <> 0) AND (id < 4)) THEN
71 SET current a SHIFT(current BY xcen/2, vcen/4+25, zoom)
72 ELSE
73 IF id u= 4 THEN
74 SET current = SHIFT(current BY xcen/2, Ycen/4-15,)
75 ELSE
76 SET current SHIFT(current BY xcen/2, vcenl4, zoo)
77 END
78 END
7S MO'.E current
so END
eI END
82 RETURN

.END

156

Appendix C

User's Manual

Appendix C contains the User's Manual for setting up

this particular vision-robot system (VSR) for the various

tasks accomplished in my thesis. The Manual provides step-

by-step instructions to enable the user to execute the

various programs.

157

Directions for Operating VRS

Step Direction

:::> NOTE <==:

It is assumed that the user has read the following
references -- > (16; 17; 18), before using the VRS.

1. Mount the camera to the camera stand, with the
camera pointing towards the black part of the
table, when looking at the image through the
camera.

2. Load the vision system's operating software by
inserting the Univision S/W tape into the "TAPE 0"
slot located on the right side of the vision
system's video monitor. Depress the
"RESTART/RELOAD" button (a blue light should be
visible).

3. Turn the key to the "ON" position. The LED by the
tape drive will flash while the system is loading.

===> NOTE <===

It takes approximately 5 minutes to load the
system. Therefore, the user may accomplish Steps
16-26 to bring up the robot, while loading occurs.

A correct load will results when the Machine
Intelligence Univision (3.09-B) logo is displayed.

4. Remove the tape from the drive.

5. Press the light pen to any white part of the
screen.

.==> NOTE <===

The following steps set up the vision system for
Subtask 1. For setting up the vision system for
the remaining Subtasks and Tasks accomplish Steps
15.

6. Select: o SYSTEM SETUP

o VIEW CURRENT CAMERA

7. Place the calibration disk in the camera's field of
view (FOV).

158

8. Focus the camera and adjust the aperture to get as
clear an image as possible.

9. Press the light pen to any part of the screen and
then select the following:

o SET THRESHOLD

Set the threshold value to 128 by pressing the
light pen to an arrow until 128 shows up in the
upper right corner of the monitor.

128 provides the best contrast when using white
objects against a black background.

10. Select: o QUIT

o OPERATING OPTIONS

Ensure "ONLY" the following options are "ON".

"o CONNECTIVITY ANALYSIS
"o FIRST MOMENTS
"o KEEP ALL BLOBS
"o NOISE SUPPRESSION
"o OUTLINE BLOBS
"o PERIMETERS
"o RECOGNITION
"o SECOND MOMENTS

11. Select: o QUIT

"o QUIT

"o EXPERT OPERATION

"o OPERATING OPTIONS

In addition to the options listed in Step 10,
ensure "ONLY" the following options are "ON".

"o OBJECTS ONLY PROCESSED
"o PROCESS ALL BLOBS

===> NOTE <==:

Other options are possible, refer to (17) for more
information.

159

12. Select: o QUIT

o QUIT

o UNIVISION

o VIEW CURRENT CAMERA

13. READY TO GO !!!!!!

14. Ensure the robot (operating under VAL II) is up and
running. If not, accomplish Steps 16-26.

15. ONLY the following options from the various
OPERATING OPTIONS should be selected when
accomplishing Subtasks 2, 3, 4 and Task 2.

"o CONNECTIVITY ANALYSIS
"o FIRST MOMENTS
"o NOISE SUPPRESSION
"o OBJECTS ONLY PROCESSED

===> NOTE <===

The following steps will setup the PUMA 560 under the VAL II

operating system.

16. Turn of the robot's dumb terminal.

17. Turn the power "ON" the Unimate Computer/Controller.

18. A message should appear asking the user to load VAL II
from floppy disk.

19. Insert the 5 & 1/4" floppy disk entitled "VAL II
560.1.4.B" into the Unimate disk drive.

20. Type "Y <RETURN>" to the prompt asking the user to load
VAL II.

21. Enter the number "798" for the robot serial number.

22. Approximately 2 minutes later, type "Y <RETURN>" to the
prompt asking the user to INITIALIZE -the system. A
system prompt will appear.

160

~==> NOTE <==

Initializing the system has the effect of erasing all
programs stored in memory. Therefore, ensure a copy of
all software is stored on disk.

23. Remove the Unimation disk and insert the Univision I
system program disk 935H3 which contains the interface
software.

24. Enter the following:

==> LOAD UNIVISIONI.PG

11 s.*.* files and 15 u.*.* files should be loaded and
displayed.

25. Remove the Univision disk and insert the Vision Servo
Control disk into the Unimate disk drive.

26. Enter the following:

:=> LOAD VISION.SERVO.CONTROL

The 19 programs listed in Appendix B should be loaded.

27. To execute Subtask 1, type the following:

EX VISION.DEMO

and accomplish the OPTIONS in order to initialize
communications, calibrate the systems, train targets,
and execute open loop, static look-and-move control.

28. For the remaining Subtasks and Task, the camera must be
mounted on the third joint of the PUMA 560 (see Figure
10 in Chapter III) and the table removed from the robot
workspace. Put the black part. of the table on the
floor for a work area. The vision system must also be
re-calibrated by executing the following self-
explanatory program:

EX U.K.TEACH

which determines the camera scale factor (s.l,.scale
should be approximately equal to 0.5).

161

29. To execute Subtask 2, delete all prototypes from the
vision system's memory by typing the following:

EX U.BOOT

Next place a target under the camera's FOV. The system
is ready for closed loop, static look-and-move visual
servo control. Enter the following:

EX TRACK.TARG
30. Before executing Subtask 3, the trained targets must be

loaded into the vision system's memory. This is
accomplished by inserting the vision cassette, labeled
"VISION SERVO CONTROL TARGETS", into the vision
system's "Tape 0" slot. Next select the following
with the light pen:

o PROTOTYPE MENU
o LOAD ALL PROTOTYPES FROM MEMORY

The system should now be ready. Place the white ball

below the camera and enter the following:

EX TRACK.TARG.SCAT

31. To execute Subtask 4, simply place the ball anywhere on
the black background and enter the following:

EX SEARCH

32. Finally, to execute Task 2, closed loop, dynamic look-
and-move visual servo control, place the target near
the center of the camera's FOV and enter the following:

EX TRACK.TARG.DCAT

33. When finished for the day, follow the manuals for
shutting the systems down.

162

Bibliography

1. Ahluwalia, Rashpal S. and Lynn M. Fogwell. "A
Modular Approach to Visual Servoing," Proceedings
of the IEEE 1986 International Conference on
Robotics and Automation, 2: 943-950. IEEE Computer
Society, Washington, 1986.

2. Bamba, Takao, et al. "A Visual Sensor for Arc-
welding Robots," Robot Vision. 169-177.
IFS(Publications) Ltd., U.K. and Springer-Verlag,
Berlin, Heidelberg, New York, 1983.

3. Davis, Capt Dewayne. "Robots 11 Presentation on
Robotic Aircraft Refueling." Copy of briefing
given at Robots 11 Conference. Wright-Patterson
AFB OH, 29 April 1987.

4. D'Azzo, John J. and Constantine H. Houpis. Linear
Control Systems analysis and Design (Second
Edition). New York: McGraw-Hill Book Company,
1981.

5. Harrell, R. C. et al. "Vision Guidance of a
Robotic Tree Fruit Harvester," Intelligent Robots
and Computer Vision, 579: 537-545. SPIE, 1985.

6. Hill, John and William T. Park. "Real Time Control
of a Robot with a Mobile Camera," Proceedings of
the Ninth]SIR. 233-246. Society of Manufacturing
Engineers, Michigan, 1979.

7. Kim, Jin Kyoung et al. "Visual Servoing of a Robot
Manipulator Using 3-D Information from Hand-Held
Camera Motion," Proceedings of the 25th Conference
on Decision and Control. 417-422 (December 1986).

8. Koren, Y. Robotics for Engineers, New York: McGraw-
Hill Book company, 1985.

9. Leahy, Michael B. Jr. The RAL Hierarchical Control
S.ystem User's Guide, Version 1.0. Rensselaer
Polytechnic Institute, Troy NY, April 1986.

10. Palm, William J. and Ramiro Liscano. "Integrated
Design of an End Effector for a Visual Servoing
Algorithm," Journal of Robotic Systems, 3:
221-236 (Fall 1986).

163

11. Pugh, Alan. Robot Vision, U.K. and Springer-
Verlag, Berl'n, Heidelberg, New York:
IFS(Publications) Ltd., 1983.

12. Sanderson, Arthur C. and Lee E. Weiss. "Adaptive
Visual Servo Control of Robots," Robot Vision.
107-116. U.K. and Springer-Verlag, Berlin,
Heidelberg, New York: IFS(Publications) Ltd.,
1983.

13. Smith, John L., et al. "Robotic Concepts for
Aircraft Turnaround," Report to USAF System
Command, Aeronautical Systems Division/AFWAL/FIER.
Wright-Patterson AFB, OH, 15 April 1986.

14. VanderBrug, G. J., et al. "A Vision System for
Real Time Control of Robots," Proceedings of the
Ninth ISIR. 213-231. Society of Manufacturing
Engineers, Michigan, 1979.

15. Ward, M. R., et al. "CONSIGHT: A Practical
Vision-Based Robot Guidance System," Proceedings
of the Ninth ISIR. 195-211. Society of
Manufacturing Engineers, Michigan, 1979.

16. Westinghouse Company, Unimation. Unimate PUMA Mark
II Robot, 500 Series Equipment Manual for VAL II
and VAL Plus q-erating Systems 398U1. Unimation
Incorporated, March 1985.

17. Westinghouse Company, Unimation. Preliminary
Unimate Industrial Robot Programming Manual User's
Guide to 'AL II 398T1. Unimation Incorporated, May
1985.

18. Westinghouse Company, Unimation. Preliminary
Unixision I Robot Vision System Equipment Manual
398L1. Unimation Incorporated, June 1983.

19. Westinghouse Company, Unimation. InLerface
Description of Interface Between MIC Vision System
and Unimations' VAL II Programming Language.
Unimation Incorporated.

164

VITA

Mikel M. Miller was born on 8 May 1960 in Sioux City, Iowa,

with most of the credit given to his parents Barbara M. arid

Dennis A. Miller. He graduated from high school in Williston,

North Dakota in 1978 and attended North Dakota State University,

Fargo, North Dakota, from which he received the degree of

Bachelor of Science in Electrical and Electronic Engineering in

November 1982. Upon graduation, he received a commission in the

USAF through the Reserve Officer Training Corps program, in which

he was a Distinguished Graduate. He married Colleen M. Conlin on

18 December 1982 at Saint Joseph's Church in Williston North

Dakota. He entered the Air Force on active duty in April 1983.

His first assignment as an Air Force Officer was to the 1000th

Satellite Operations Group at Offutt AFB, Nebraska. His job

titles included Satellite Systems Engineer and System Integration

Engineer; responsible for the system test, integration, and

evaluation of upgrades to the Defense Meteorological Satellite

Program, Block 5D-2 satellite and associated ground system.

While at Offutt, on 31 March 1984, his first child, a boy, Casey

C., was born. He left the "Cornhusker" state when assigned to

the Air Force Institute of Technology, School of Engineering, at

Wright-Patterson AFB, Ohio in May of 1986. On 2 February 1987,

his second child, a girl, Krista M., was born. Most of the

credit for the birth of his children go to his wife, Colleen.

Permanent address: 814 Ist Avenue West
Williston, North Dakota 58801

165

SECURITY.CLASSgFICSATION OFPTHIS PAGE

i Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Ia& REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

ECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited,

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/87D- 45
"6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)
School of Engineering AFIT/ENG

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFWAL/MLTZ

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT

Wright-Patterson AFB, OH 45433 ELEMENT NO NO NO IACCESSION NO

11. TITLE 'Include Security Classification)

See Box 19

12. PERSONAL AUTHOR(S)

likel M. Miller. ant. UAF
PE OF REýORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month. DaY) 15.PAGE COUNT

MgThP~±eOsisT FROM____ TO____7 ,-pmp 173
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

12 09 Robot Vision, Visual Servoing, Vision
Vision Servo CI "t-rcil

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: IMPLEMENTATION OF A VISUAL SERVOING SYSTEM FOR
EVALUATION OF ROBOTIC REFUELING APPLICATIONS

Thesis Chairman: Matthew Kabrisky, PhD
Professor Of Electrical Engineering

1-1,~y~cr61841LAW At1R 190-1

2n DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
"I UNCLASSIFIEDWUNLIMITED [I SAME AS RPT 0 DTIC USERS UNCT.Acq:TTF.DE _

NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

1. AM (513) -255-5276 MJt.°Matte Kabrigkv- PhD , 5,)2,-26 I AFIT-/PN

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

This research effort designed and integrated a visual
servo control scheme for a PUMA 560 robot arm that derived
its control information from a Machine Intelligence Corporation
vision system. The vision system's TV camera was mounted to the
PUMA's third joint. The integrated vision-robot system (VRS)
used closed loop, static and dynamic, visual servo control techniques
techniques to demonstrate the feasibility of ground refueling
an aircraft.

UNCLASSIFIED

